model 1: matroid polytope

model 2: Bergman far

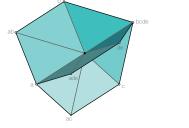
model 3: conormal fan o oo

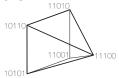
Geometry of Matroids

Federico Ardila

San Francisco State University (San Francisco, California) Universidad de Los Andes (Bogotá, Colombia)

William Tutte's Distinguished Lecture Series University of Waterloo, August 3, 2018





matroids 0000 000

Summary.

- Matroids are everywhere.
- There are many ways of thinnking about matroids.
- Geometry and matroid theory help each other.

Most of the work of mine that I will talk about is joint with Carly Klivans (06), Graham Denham + June Huh (17-18).

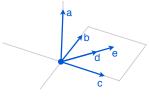
model 2: Bergman fa

model 3: conormal fan o oo

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = collection of subsets of *E* which are bases of \mathbb{R}^d .



E = abcde $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

model 2: Bergman fai

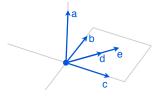
model 3: conormal fan o oo

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = collection of subsets of *E* which are bases of \mathbb{R}^d .

Properties: (B1) $\mathcal{B} \neq \emptyset$ (B2) If $A, B \in \mathcal{B}$ and $a \in A - B$, then there exists $b \in B - A$ such that $(A - a) \cup b \in \mathcal{B}$.



E = abcde $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

model 2: Bergman fai

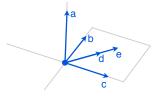
model 3: conormal fan o oo

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = collection of subsets of *E* which are bases of \mathbb{R}^d .

Properties: (B1) $\mathcal{B} \neq \emptyset$ (B2) If $A, B \in \mathcal{B}$ and $a \in A - B$, then there exists $b \in B - A$ such that $(A - a) \cup b \in \mathcal{B}$.



E = abcde $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

Definition. (Nakasawa, Whitney, 35) A set E and a collection \mathcal{B} of subsets of E are a **matroid** if they satisfies properties (B1) and (B2).

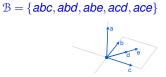
matroids
0000
0
000

model 2: Bergman fan 000 0 model 3: conormal fan o oo

E = abcde

Many matroids in "nature":

1. Linear matroids E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = bases of \mathbb{R}^d in E.

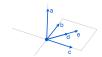


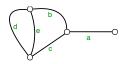
matroids
0000
0
000

model 2: Bergman fan 000 0 model 3: conormal fan o oo

Many matroids in "nature":

- 1. Linear matroids E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = bases of \mathbb{R}^d in E.
- 2. Graphical matroids E= edges of a connected graph G. \mathcal{B} = spanning trees of G.





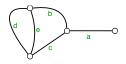
model 1: matroid polytope

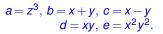
model 2: Bergman fan 000 0 model 3: conormal fan o oo

Many matroids in "nature":

- 1. Linear matroids E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = bases of \mathbb{R}^d in E.
- 2. Graphical matroids E= edges of a connected graph G. \mathcal{B} = spanning trees of G.
- 3. Algebraic matroids
- E = set of elements in a field extension L/K.
- \mathcal{B} = transcendence bases for L/K in E

E = abcde $\mathcal{B} = \{abc, abd, abe, acd, ace\}$





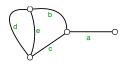
model 1: matroid polytope

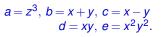
model 2: Bergman fan 000 0 model 3: conormal fan o oo

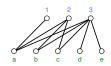
F = abcde

Many matroids in "nature":

- 1. Linear matroids E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = bases of \mathbb{R}^d in E.
- 2. Graphical matroids E= edges of a connected graph G. \mathcal{B} = spanning trees of G.
- 3. Algebraic matroids
- E = set of elements in a field extension L/K.
- $\ensuremath{\mathbb{B}}$ = transcendence bases for L/K in E
- 4. Transversal matroids
- E = "bottom" vertices of a bipartite graph.
- $\ensuremath{\mathbb{B}}$ = maxl sets that can be matched to the top.







Theorem for matroids \mapsto Theorems for vectors, graphs, field exts, matchings,...

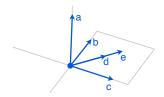
matroids ○ ○ ○ ○ model 1: matroid polytope

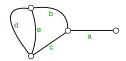
model 2: Bergman fan 000 0

model 3: conormal fan o oo

Many points of view.

1. Bases $\mathcal{B} = \{abc, abd, abe, acd, ace\}$





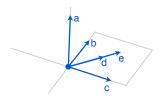
model 1: matroid polytope

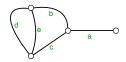
Many points of view.

1. Bases $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

2. Independent sets $\mathcal{I} = \{abc, abd, abe, acd, ace, ab, ac, ad, ae, bc, bd, be, cd, ce, a, b, c, d, e, \emptyset\}$ model 2: Bergman fan

model 3: conormal fan o oo



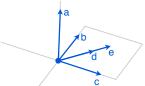


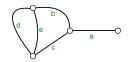
Many points of view.

1. Bases $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

2. Independent sets ab, ac, ad, ae, bc, bd, be, cd, ce, a, b, c, d, e, 0}

3. Circuits (minimal dependences.) $C = \{de, bcd, bce\}$





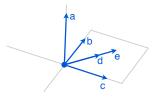
model 1: matroid polytope

Many points of view.

1. Bases $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

2. Independent sets $\mathcal{I} = \{abc, abd, abe, acd, ace, ab, ac, ad, ae, bc, bd, be, cd, ce, a, b, c, d, e, 0\}$

3. Circuits (minimal dependences.) $C = \{de, bcd, bce\}$ $BC = \{d, bc, bc\}$





lel 2: Bergman fan

model 3: conormal fan o oo

model 1: matroid polytope

Many points of view.

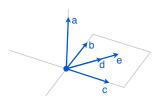
1. Bases $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

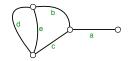
2. Independent sets $\mathcal{I} = \{abc, abd, abe, acd, ace, ab, ac, ad, ae, bc, bd, be, cd, ce, a, b, c, d, e, 0\}$

3. Circuits (minimal dependences.) $C = \{de, bcd, bce\}$ $\mathcal{B}C = \{d, bc, bc\}$

4. Flats (spanned sets.)
𝔅 = {*abcde ab, ac, ade, bcde*,
a, b, c, de,
∅}

model 3: conormal fan o oo



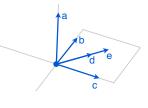


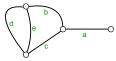
matroids
0000
0
000

model 2: Bergman fan 000 0 model 3: conormal fan o oo

Many points of view.

- 1. Bases (polytope)
- 2. Independents (simplicial complex)
- 3. (Broken) Circuits (monomial ideal)
- 4. Flats (lattice)





It is as if one were to condense all trends of present day mathematics onto a single finite structure, a feat that anyone would a priori deem impossible, were it not for the fact that matroids do exist.

Gian-Carlo Rota

model 1: matroid polytope

model 2: Bergman fai

model 3: conormal fan o oo

The characteristic polynomial

The characteristic polynomial of M is

$$\chi_M(q) = \sum_{A \subseteq E} (-1)^{|A|} q^{r(E) - r(A)}$$

model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

The characteristic polynomial

The characteristic polynomial of M is

$$\chi_M(q) = \sum_{A \subseteq E} (-1)^{|A|} q^{r(E) - r(A)} = \sum_{F \text{ flat}} \mu(F) q^{r(E) - r(F)}$$

model 2: Bergman far

model 3: conormal fan o oo

The characteristic polynomial

The characteristic polynomial of M is

$$\chi_M(q) = \sum_{A \subseteq E} (-1)^{|A|} q^{r(E) - r(A)} = \sum_{F \text{ flat}} \mu(F) q^{r(E) - r(F)}$$

For graphical matroids:

 $q\chi_{M(G)}(q) =$ number of proper vertex *q*-colorings of *G*.

model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

The characteristic polynomial

The characteristic polynomial of M is

$$\chi_M(q) = \sum_{A \subseteq E} (-1)^{|A|} q^{r(E) - r(A)} = \sum_{F \text{ flat}} \mu(F) q^{r(E) - r(F)}$$

For graphical matroids:

 $q\chi_{M(G)}(q) =$ number of proper vertex *q*-colorings of *G*. Simplicial complexes:

 $\chi_M(q) \leftrightarrow f$ -vector of broken circuit complex $BC_<(M)$

model 1: matroid polytope

model 2: Bergman fai

model 3: conormal fan o oo

The characteristic polynomial

The characteristic polynomial of M is

$$\chi_M(q) = \sum_{A \subseteq E} (-1)^{|A|} q^{r(E) - r(A)} = \sum_{F \text{ flat}} \mu(F) q^{r(E) - r(F)}$$

For graphical matroids:

 $q\chi_{M(G)}(q) =$ number of proper vertex *q*-colorings of *G*. Simplicial complexes:

 $\chi_M(q) \leftrightarrow f$ -vector of broken circuit complex $BC_<(M)$ Monomial ideals:

$$Hilb(\mathbb{R}[x_1,\ldots,x_n]/BC_{<}(M)) = \left(\frac{t}{t-1}\right)^r \chi_M\left(\frac{t-1}{t}\right)$$

model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

Are matroids geometric?.

(linear matroids) vs. (all matroids):

- Almost any matroid we think of is linear (geometric).
- (Nelson, 18) Almost all matroids are not linear.

model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

Are matroids geometric?.

(linear matroids) vs. (all matroids):

- Almost any matroid we think of is linear (geometric).
- (Nelson, 18) Almost all matroids are not linear.
- "Missing axiom" for linear matroids? No. (Mayhew et al, 14)
- This is not a flaw! Matroids are natural geometric objects.

matroids ○ ○ ○ ○ model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

The geometry of matroids.

My main point today.

Matroids are natural geometric objects.

Matroids Matroids turn people of, People are scared of them, When I wrote my book on matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it?"

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

matroids ○ ○ ○ ○ model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

The geometry of matroids The geometry of geometries.

My main point today.

Matroids are natural geometric objects.

Matroids Matroids turn people of, People are scared of them, When I write my book on matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it ? "

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

model 1: matroid polytope

model 2: Bergman fai

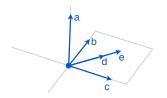
model 3: conormal fan o oo

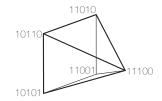
Model 1: Matroid polytopes

Def. (Edmonds 70; Gelfand Goresky MacPherson Serganova 87) The **matroid polytope** of a matroid *M* on *E* is

$$P_M = \operatorname{conv} \{ e_B : B ext{ is a basis of } M \} \subset \mathbb{R}^E$$

where e_B is the 0 – 1 indicator vector of B.





$$\label{eq:entropy} \begin{split} \textbf{\textit{E}} &= \textbf{\textit{abcde}} \\ \textbf{\textit{B}} &= \{\textbf{\textit{abc}}, \textbf{\textit{abd}}, \textbf{\textit{abe}}, \textbf{\textit{acd}}, \textbf{\textit{ace}}\} \end{split}$$

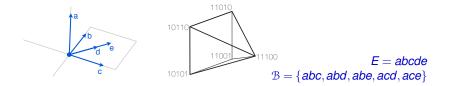
model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

The matroid polytope of M is

 $P_M = \operatorname{conv} \{ e_B : B \text{ is a basis of } M \}$



Matroid polytopes in "nature":

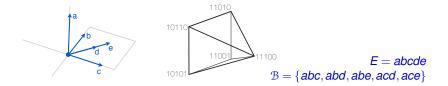
model 1: matroid polytope

model 2: Bergman fan

model 3: conormal fan o oo

The matroid polytope of M is

 $P_M = \operatorname{conv} \{ e_B : B \text{ is a basis of } M \}$



Matroid polytopes in "nature":

1. Optimization. (Edmonds 70) For a cost function $c : E \to \mathbb{R}$, find the bases $\{b_1, \ldots, b_r\}$ of minimal cost $c(b_1) + \cdots + c(b_r)$.

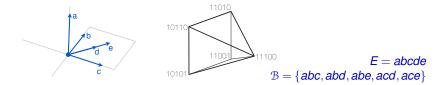
model 1: matroid polytope

model 2: Bergman fan 000 0

model 3: conormal fan o oo

The matroid polytope of M is

 $P_M = \operatorname{conv} \{ e_B : B \text{ is a basis of } M \}$



Matroid polytopes in "nature":

1. Optimization. (Edmonds 70) For a cost function $c : E \to \mathbb{R}$, find the bases $\{b_1, \ldots, b_r\}$ of minimal cost $c(b_1) + \cdots + c(b_r)$.

2. Algebraic geometry. (Gelfand Goresky MacPherson Serganova 87) Understand torus orbits in the Grassmannian.

model 1: matroid polytope

model 2: Bergman fai

model 3: conormal fan o oo

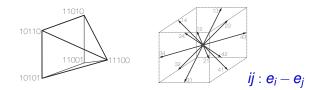
A "Zome tool" characterization of matroids

Theorem. (GGMS 87) A collection \mathcal{B} of *r*-subsets of [*n*] is a matroid if and only if every edge of the polytope

$$P_M = \operatorname{conv} \{ e_B : B \in \mathcal{B} \} \subset \mathbb{R}^n$$

is a translate of vectors $e_i - e_i$ for some i, j.

Def. A matroid is a 0-1 polytope with edge directions $e_i - e_j$.



model 1: matroid polytope

model 2: Bergman far

model 3: conormal fan o oo

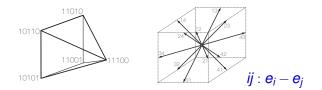
A "Zome tool" characterization of matroids

Theorem. (GGMS 87) A collection \mathcal{B} of *r*-subsets of [*n*] is a matroid if and only if every edge of the polytope

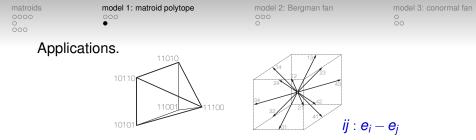
$$P_M = \operatorname{conv} \{ e_B : B \in \mathcal{B} \} \subset \mathbb{R}^n$$

is a translate of vectors $e_i - e_j$ for some i, j.

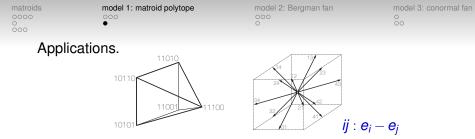
Def. A matroid is a 0-1 polytope with edge directions $e_i - e_j$.



From this geometric viewpoint, all matroids are equally natural. Matroids provide the correct level of generality!



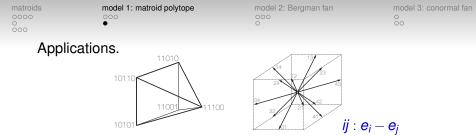
→ theory of matroid subdivisions (Derksen-Fink 10)



→ theory of matroid subdivisions (Derksen-Fink 10)

2. Deg(torus orbit in $Gr_{r,n}$) = Vol(matroid polytope).

→ combinatorial formula (Ardila-Benedetti-Doker 10)



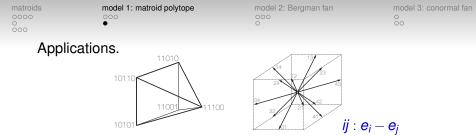
→ theory of matroid subdivisions (Derksen-Fink 10)

2. Deg(torus orbit in $Gr_{r,n}$) = Vol(matroid polytope).

→ combinatorial formula (Ardila-Benedetti-Doker 10)

3. (Joni-Rota 78) Hopf algebra of matroids via \oplus , /, \.

 $\mapsto \text{antipode}(M) = \sum_{P_N \leq P_M} (-1)^{\dim(P_N)} N = \pm \operatorname{Int}(P_M) \text{ (Aguiar-Ardila 17)}$



→ theory of matroid subdivisions (Derksen-Fink 10)

2. Deg(torus orbit in $Gr_{r,n}$) = Vol(matroid polytope).

→ combinatorial formula (Ardila-Benedetti-Doker 10)

3. (Joni-Rota 78) Hopf algebra of matroids via \oplus , /, \.

 $\mapsto \operatorname{antipode}(M) = \sum_{P_N \leq P_M} (-1)^{\dim(P_N)} N = \pm \operatorname{Int}(P_M) \text{ (Aguiar-Ardila 17)}$

4. $\{e_i - e_j\}$ is the root system for the Lie algebra \mathfrak{sl}_n . Other types? \mapsto theory of Coxeter matroids (Gelfand-Serganova 87)

model 1: matroid polytope

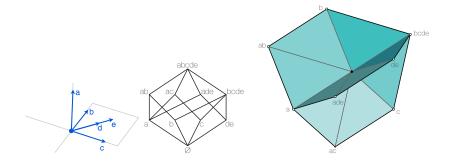
model 2: Bergman fan

model 3: conormal fan o oo

Model 2: Bergman fan

Def/Theorem. (Ardila-Klivans 06) The Bergman fan Σ_M of M is the polyhedral complex with • rays: $e_F := e_{f_1} + \dots + e_{f_k}$ for each flat $F = \{f_1, \dots, f_k\}$

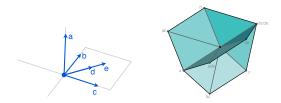
• faces: cone{ $e_F : F \in \mathcal{F}$ } for each flag $\mathcal{F} = \{\emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_l \subsetneq E\}$.



roids	model 1: matroid polytope	model 2: Bergman fan	model 3: conorm
00	000	000	0
<u></u>	0	0	00

The **Bergman fan** Σ_M

- ray $e_F := e_{f_1} + \dots + e_{f_k}$ for each flat $F = \{f_1, \dots, f_k\}$ of M
- cone $\{e_F : F \in \mathfrak{F}\}$ for each flag $\mathfrak{F} = \{\emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_l \subsetneq E\}$.



Bergman fans in "nature": Tropical geometry.

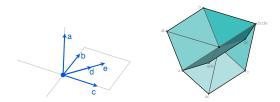
algebraic variety $V \mapsto \operatorname{Trop}(V)$ polyhedral complex

Trop(V) still knows information about V, and can be studied combinatorially.

roids	model 1: matroid polytope	model 2: Bergman fan	model 3: conorma
00	000	000	0
<u>_</u>	0	0	00

The **Bergman fan** Σ_M

- ray $e_F := e_{f_1} + \dots + e_{f_k}$ for each flat $F = \{f_1, \dots, f_k\}$ of M
- cone $\{e_F : F \in \mathcal{F}\}$ for each flag $\mathcal{F} = \{\emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_l \subsetneq E\}$.



Bergman fans in "nature": Tropical geometry.

algebraic variety $V \mapsto \operatorname{Trop}(V)$ polyhedral complex

Trop(V) still knows information about V, and can be studied combinatorially.

Question. (Sturmfels 02) Describe Trop(linear space).

Theorem. (Ardila-Klivans 06) The tropicalization of a linear space $V \subseteq \mathbb{R}^n$ is the Bergman fan $\Sigma_{M(V)}$.

model 1: matroid polytope

model 2: Bergman fan

model 3: conormal fan o oo

A tropical characterization of matroids

A **tropical variety** is a polyhedral complex "with zero-tension". It has a **tropical degree**, and AlgDeg(V) = TropDeg(Trop V).

model 1: matroid polytope

model 2: Bergman fan

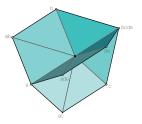
model 3: conormal fan o oo

A tropical characterization of matroids

A **tropical variety** is a polyhedral complex "with zero-tension". It has a **tropical degree**, and AlgDeg(V) = TropDeg(Trop V).

Theorem. (Fink 13) A tropical variety has degree 1 if and only if it is the Bergman fan of a matroid.

Definition. A matroid is a tropical variety of degree 1.



From this geometric viewpoint, all matroids are equally natural. Matroids provide the correct level of generality!

matroids
0000
0
000

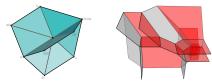
model 2: Bergman fan

model 3: conormal fan o oo

Applications.

1. A **tropical manifold** is a tropical variety that looks locally like a (Bergman fan of a) matroid.

 \mapsto theory of tropical manifolds (Mikhalkin, Rau, Shaw, ...)



matroids
0000
0
000

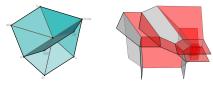
model 2: Bergman fan

model 3: conormal fan o oo

Applications.

1. A **tropical manifold** is a tropical variety that looks locally like a (Bergman fan of a) matroid.

 \mapsto theory of tropical manifolds (Mikhalkin, Rau, Shaw, ...)



2. (Adiprasito-Huh-Katz 18) A combinatorial **Chow ring** of Σ_M behaves like the cohomology ring of a smooth projective variety. (!!!) This gives that the coefficients of the characteristic polynomial

$$\chi_G(q) = w_{\nu-1}q^{\nu-1} - w_{\nu-2}q^{\nu-2} + \cdots \pm w_1$$

are unimodal and log-concave:

$$w_1 \le \cdots w_{k-1} \le w_k \ge w_{k+1} \ge \cdots \ge w_{\nu-1}$$

 $w_{i-1}w_{i+1} \le w_i^2$ for $i = 1, \dots, \nu - 2$.

This was conjectured by Read (68) and Hoggar (74).

model 1: matroid polytope

model 2: Bergman fai

model 3: conormal fan

Model 3: conormal fan

Definition. (Ardila-Denham-Huh 17) A biflag of *M* consists of a flag $\mathcal{F} = \{F_1 \subseteq \cdots \subseteq F_l\}$ of flats and a flag $\mathcal{G} = \{G_1 \supseteq \cdots \supseteq G_l\}$ of coflats (flats of M^{\perp}) such that $\bigcap_{i=1}^{l} (F_i \cup G_i) = E, \qquad \bigcup_{i=1}^{l} (F_i \cap G_i) \neq E.$

model 1: matroid polytope

model 2: Bergman fa

model 3: conormal fan

Model 3: conormal fan

Definition. (Ardila-Denham-Huh 17) A biflag of *M* consists of a flag $\mathcal{F} = \{F_1 \subseteq \cdots \subseteq F_l\}$ of flats and a flag $\mathcal{G} = \{G_1 \supseteq \cdots \supseteq G_l\}$ of coflats (flats of M^{\perp}) such that $\bigcap_{i=1}^{l} (F_i \cup G_i) = E, \qquad \bigcup_{i=1}^{l} (F_i \cap G_i) \neq E.$

All maximal biflags have length n-2.

Definition. (Ardila-Denham-Huh 17) The *conormal fan* $\Sigma_{M,M^{\perp}}$ is the polyhedral complex in $\mathbb{R}^{E \sqcup E}$ with • rays $e_F + f_G$ for each flat F and coflat G with $F \cup G = E$ • *cone*($\mathfrak{F},\mathfrak{G}$) := *cone*{ $e_{F_i} + f_{G_i} : 1 \le i \le l$ } for each biflag ($\mathfrak{F},\mathfrak{G}$).

matroids	
0000	
0	
000	

model 2: Bergman fan

model 3: conormal fan o • o

Application.

1. The conormal fan seems to be a Lagrangian analog of the Bergman fan. Are conormal fans the tropical Lagrangian linear spaces?

matroids	model 1: matroid polytope	model 2: Bergman fan	model 3: conormal fan
0000 0 000	000 0	000 0	○ ●○

Application.

1. The conormal fan seems to be a Lagrangian analog of the Bergman fan. Are conormal fans the tropical Lagrangian linear spaces?

2. (Ardila-Denham-Huh 18) A combinatorial **Chow ring** of $\Sigma_{M,M^{\perp}}$ **also** behaves like the cohomology ring of a smooth projective variety. (!!!) This gives that the coefficients of the shifted characteristic polynomial

$$\chi_G(q+1) = h_{\nu-1}q^{\nu-1} - h_{\nu-2}q^{\nu-2} + \cdots \pm h_1$$

are unimodal, log-concave, and flawless:

$$\begin{split} h_1 &\leq \cdots h_{k-1} \leq h_k \geq h_{k+1} \geq \cdots \geq h_{v-1} \\ h_{i-1}h_{i+1} &\leq h_i^2 \quad \text{for } i = 1, \dots, v-2. \\ h_i &\leq h_{s-i} \quad \text{for the nonzero entries.} \end{split}$$

This was conjectured by Brylawski (82), Dawson (83) and Swartz (03). It strengthens Adiprasito-Huh-Katz 18 significantly.

matroid: 0000 000 model 1: matroid polytope

model 2: Bergman fan

model 3: conormal fan $\circ \\ \circ \bullet$

muchas gracias.