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Summary. Tropical varieties are not simple objects; even
tropical linear spaces have a very rich and interesting com-
binatorial structure which we only partially understand.
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Tropical geometry: a general philosophy

Tropicalisation is a very useful general technique:

algebraic variety +— tropical variety
V — Trop(V).
Idea: Obtain information about V from Trop( V).
o Trop( V) is simpler, but contains some information about V.
o Trop(V) is a polyhedral complex, where we can do

combinatorics.

Similar to : toric variety ~— polyhedral fan
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Tropicalisation.

The field K = C{{t}} of Puiseux series:
f(t) = a1t + apt? + - -+, aeC{n<n<---}CQ.

has valuation deg : K — R U {oo} =: R where deg(f) = ry.
Tropicalising points: deg : K" — R’

A= (A,...,A) — a= (degAy,...,deg Ap)
| (P+3B + 4+ 175+ 21%)—(2,1.5) |

Tropicalising polynomials: Trop : K[ Xy, .., X;] — {f : R” — R}
A—degA X + Y—min(x,y) X -Y—x+y
] (" + B)X? +2YZ—min(15+2x, y + 2) \
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Fundamental Theorem of Tropical Geometry.

Theorem/Defn. (Einsiedler-Lind-Kapranov, Speyer-Sturmfels)
Let / be an ideal in K[X;™', ..., X;'] and let

V=V(l)={Ae (K)"|F(A) =0for F € I}

The tropical variety Trop(V) is
Trop(V) := {aeR"|(Trop F)(a) is achieved twice for F € [}
= cl(degA|Ac V)

Informally,

Trop( V) := Solutions of tropical equations
= cl(Tropicalisation of the solutions).
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Trop(V) := Solutions of tropical equations
= cl(Tropicalisation of the solutions).

Ex. V={(X,Y,2) € (K)®|(t 3 +2)X + (t+5t'"°)Y +Z =0}
1. Tropicalise equations:

TropV = {(x,y,2z) € R |min(x — 3,y + 1, z) att. twice}.
2. Tropicalise solutions:

Trop(V) =cl{(deg X,deg Y,deg 2)|(X,Y,Z) € V}

): Exercise.

(2cH
1 C 2): Harder.

(

-
-
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Tropicalisation:
algebraic variety — tropical variety
V — Trop(V).

To apply this technique, we ask two questions:

1. What does Trop(V) know about V?

Find the right questions in alg. geom. to “tropicalise".

e Gromov-Witten invariants Ngd of CP? (Mikhalkin)

e Double Hurwitz numbers. (Cavalieri-Johnson-Markwig)

2. What do we know about Trop(V)? Not very much!
e (Virred.) Pure, connected in codimension 1. (Bieri-Groves).
e (V Schdn) Links have only top homology. (Hacking)

] Tropical varieties are ‘simpler’, not ‘simple’. Study them! \
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Examples of tropical varieties
Example 1. Tropical hyperplanes in TP,

AiXi+... 4+ ApXyp =0 +— min(xy + ay,...,Xn + an) ach. twice

TP?: min(x — 3,y + 2, z) twice TP3: min(xy, X2, X3, X4) twice

(0'2-‘¢) 2 -f‘“’\
Tropical projective plane TP?: Polar fan of the simplex

(a,b,c) ~ (a—c,b—c,0) centered at —(ay, ..., an).
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Example 2. Tropical conics in TP?:

AX2 4+ BY? + CZ? + DXY + EXZ + FYZ =0 —
min(a+2x,b+2y,...,e+ x + z,f+ y + z) achieved twice.

Two tropical conics:

In principle, could have up to (§) = 15 edges.
In fact, they all have 4 vertices and 9 edges (3 bounded).
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Example 3. A tropical line in TP3.
1 t
L = rowspace B8 g2
Trop L: The following are attained twice:

min(x; +2,x2 + 1,x3 +2), min(xq + 1, X2, X4 + 2),
min(x; +2,x3, X4 + 1), min(xo +2,x3 + 1, x4 + 2)

1
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The goal of this talk:
To summarize what we know about tropical linear spaces.

(3,-2,0) </ -
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Tropical linear spaces, part 1: constant coefficients.

| Goal. If Vis alinear subspace, describe TropV. |

(Part 1: Assume that all coefficients are in C.)

w € TropV « for each circuit (equation) a1 Xj, +--- + axXj, =0
of V, min(w;,,...,w;) is achieved twice.

0 00 0 1
Example. L=rowspace | 1 1 0 0 O |.
01120

Xi—Xo+Xs=0, Xy =2Xs  Circuits: 123,34, 124.

Trop L: min(wy, wa, wa), min(wy, wa, wy), min(ws, wy) att. twice.
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L=rowspace | 1 1 0 0 0 |.Circuits: 123,34,124.
01120

Trop L: min(wy, wa, wa), min(wy, wa, wy), min(ws, wy) att. twice.
Wi = Wo < W5 = W3 = Wy OK Wi =Wz = Ws < Wg = Wy NO

Note.

e ws is irrelevant.

o Order of wy, wo, Wy, wy is either
e Wi > Wo = W3 = Wy,
o Wo > Wy = W3 = Wy, Or
° W3:W4>W1:W2.
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So Trop V only depends on the matroid (set of circuits) of V.

For any matroid M (set of circuits) we define

TropM :={w € RE | rcne|2 w, is achieved twice for all circuits C.}
(sometimes called the Bergman fan of M.)

This calls for a crash course in matroid theory.
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Matroid theory, v1: circuits.

Matroid theory: An abstract theory of independence.
(Instances: linear, algebraic, graph independence.)

The key properties of (minimal) dependence:
A matroid M on a finite ground set E is a col-
lection C of circuits (subsets of E) such that:

CO0. () is not a circuit.

C1. No circuit properly contains another.

C2. If Cy and C» are circuits and x € Cy N Cy,
then Cy U Co — x contains a circuit.

Ex: The matroid of a vector space / config. L =row(E)

(circuits) < (minl egns. of L) «<» (minl linear deps on cols of E)
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Why matroids?

e They are general, applicable, and well-developed.
Example: Every matroid has a well-defined rank function.
¢ Dimension of vector spaces
e Transcendence degree of a field extension
e The spanning trees of a graph have the same size.

¢ Many different (but equivalent) points of view.
e Matroid polytopes. We need it.
o Lattice of flats. We need it.
e Optimization (greedy algorithms). We need it.

e (Our main reason today.) Loosely speaking:

algebraic geometry — tropical geometry
specialises to
linear algebra — matroid theory.
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Matroid theory, v2: lattices of flats.

E: set of vectors

o flat: (the vectors of E in) span(A) for AC E.

e lattice of flats Ly,: the poset of flats ordered by containment.
e order complex A(Ly): the simplicial complex of chains of Ly,.

(vertices = flats, faces = flags; Ly = Ly — {0,1}).

o |.C={123,124,34}.

L:rowspace{ ? :8 E
,2,34,5,1234,15,25,345,12345}.

o Flats: 7 = {0

0
]
0
o1

Theorem. (Bjorner, 1980) A(Ly) is a pure, shellable
simplicial complex. It has the homotopy type of a
wedge of |u(Ly)| (r —2)-dimensional spheres.
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The main theorem.
Let Trop’M = TropM N (unit sphere).

Theorem( - Klivans)
Trop’ (M) " =" A(Ly).

More precisely, A(Ly) is a subdivision of Trop'(M).

Corollary. (.f. - Klivans) In constant coefficients, tropical
linear spaces are cones over wedges of (r — 2)-spheres.
The number of spheres is computable combinatorially.

Key observation:

Wa, =+ = Wa, > Wp, =+ = Wp, > --- isin Trop(M)
if and only if AAUB,AUBUC,... are flats of M.
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Some interesting special cases.
1. A1 ={e—¢|1<i<j<n}

e Trop A,_1 is the space of phylogenetic trees T,,. (.f. - Klivans)
(T, also appears naturally in homotopy theory and in Mg ,,.)

e Tp has homotopy type \/(,_1 S". (Vogtmann)

¢ (Chepoi-F. tree reconstruction alg.) = (tropical projection) (.f.)

2. ® = root system of a finite Coxeter system (W, S)
e Trop’ ® = (nested set complex of ®), which encodes De

Concini and Procesi’s “wonderful compactification" of C" — Ag.
e Trop ® can be described combinatorially as a space of
“phylogenetic trees of type W", which come from tubings of the

Dynkin diagram. (.f. - Reiner - Williams)

4

S
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Matroid theory, v3: matroid polytopes

A basis of M is a maxl. indept. set. The matroid polytope is

Py =conv(ep, + -+ €p, | {b1,...,br} is a basis.)
0o 0 o0 o 1
L:rowspace[gJ 1o g},cz{123,124,34}. )

o Bases: B = {125, 135, 145,235, 245}
e Py = conv(11001,10101,10011,01101,01011)

12

Interpretations:
o linear programming and greedy algorithms
o moment polytope of the closure of a torus orbit in Gr(d, n)

Theorem. (GGMS) A 0-1 polytope is a matroid polytope
if and only if all its edges are of the form e; — e;.

24
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A matroid is loopless if every element is in some basis.

Proposition. (Sturmfels)
Trop M is the fan dual to the loopless faces of Py:

TropM = {w € R" | The w-max face of Py, is loopless.}
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Tropical linear spaces, part 2: arbitrary coefficients.

(from constant to arbitrary coeffs) Let L be a linear space
with arbitrary coeffs and u € Trop L. The local cone at u is
coneyTrop L = Trop L,

for a linear space L, with constant coefficients.

L = rowspace [ Lore e } Trop L =
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Each local cone is dual to (loopless part of) a matroid polytope.

The matroid polytopes give a subdivision of the hypersimplex
A(n,d) =conv(e, +---+ e |[{i,...,iq} € [n])

(which is the matroid polytope of a generic vector space.)
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Theorem. (Speyer) A d-dimensional tropical linear space
in n-space is dual to a matroid subdivision: a subdivision of
A(n, d) into matroid polytopes.

| Tropical linear spaces: |

constant coeffs. — matroids
arbitrary coeffs. — matroid subdivisions
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Tropical linear spaces:
constant — matroids
arbitrary — matroid subdivs.

Other occurrences of matroid subdivisions:
e Kapranov’s generalized Lie complexes.
Chow quot. Gr(d, n)//T - limits of torus orbit closures in Gr(d, n)
e Hacking, Keel, and Tevelev’s very stable pairs.
generalized hyperplane arrangements.
e Lafforgue’s compactif of fine Schubert cells in Grassmannian.

| Lafforgue: Py indecomposable — M has finitely many realizations. \

Mnév: Realization spaces of Ms can have arbitrarily bad singularities.
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Matroid subdivisions
How can a matroid polytope
can be divided into smaller
matroid polytopes?

(Construct? Verify?
Prove impossibility?)

One approach:

Find “measures" of a matroid
M that behave like valuations
on Py.

A function f : Matroids — G is a matroid valuation if for any
subdivision of Py into Py, , ..., Py, we have
m
F(M) =Y (—1)2mPw=dm P f(a;) (1)
i=1
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Some matroid valuations:

e Vol(Py) (.f.-Benedetti-Doker) (Lam-Postnikov, Stanley)
|Py N Z"| = number of bases of M
Ehrhart polynomial Ep,,(t) = |tPy N Z"|. (.f. - Doker)

Tutte polynomial Ty (x, y) (Speyer)
(the mother of all (del.-contr.) matroid invariants)

Quasisym function Qu(x1, ..., Xn) (Billera-Jia-Reiner)
e Invariants coming from K-theory of Gr(d, n) (Speyer)

Theorem. (Speyer) A d-dimensional tropical linear space

in n-space has < (";5") (®"2%") i-dimensional faces.

He uses a mysterious invariant gy (t) from K-theory. What does
it mean combinatorially? If we knew, we could prove:

] Conjecture. This bound holds for any matroid subdivision. \
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A very general matroid valuation.
Define V : Matroids — G by:

V(M) = Z(ﬂ'? r(mq), r(my,m2)y ... F(71, ..., 7mn))

weSh

where G is the free abelian group generated by such symbols.
For L =rowspace [ ; | ¢ 5],

V(M) = (1234,1,2,2,2) + - - + (3421,1,1,2,2) + - - -.

Theorem. (.f. - Fink - Rincon, Derksen)
V is a matroid valuation.
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7T€Sn

Theorem. (.f. - Fink - Rincon, Derksen)
V is a matroid valuation.

Example. For the subdivision of A(6,3)
V(M) = V(My) + V(My) + V(Ms)

—V(Mi2) — V(Mi3) — V(Mag) + V(My23)
The summands with = = 132456 give
(writing (132456, 1, 2, 3, 3, 3,3) — (1,2, 3, 3))

(1,2,3,3) = (1,2,3,3) + (1,2,2,3) + (1,2,2,2)

-(1,2,2,3) - (1,2,2,2) = (1,2,2,2) + (1,2,2,2)

Idea of proof. Interpret each term like
(1,2,2,2) — (1,2,2,2) — (1,2,2,2) + (1,2,2,2) =0
as a reduced Euler characteristic of a contractible space.
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All matroid valuations.

V(M) = > (m, (r(m1), (w1, m2), ..., 1(w1, .., 7))

S Sn

Theorem. (Derksen - Fink)
V is a universal matroid valuation.

Theorem. (Derksen - Fink)
Let v(n, r) be the rank of the abelian group of valuations on

matroids of n elements and rank r. Then

x© 0 Xn—ryr X—y
> > v(n.n) s =7

n xe—X —ye ¥
n=0 r=0

So in principle we know how far we can push this approach.
In practice there is more to do.
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summary

e We do not understand tropical varieties very well yet.
e We understand tropical linear spaces to some extent.

o Locally, they “are" matroids.

¢ Globally, they “are" matroid subdivisions.

¢ We know many things about matroids, and a few things
about matroid subdivisions.

some future directions

¢ Understand matroid subdivisions better. Systematic
construction? Mixed subdivisions? Secondary polytope?

¢ Generalize this story to subdivisions of Coxeter matroids
and tropical homogeneous spaces (under certain
hypotheses, to be determined). (.f. - Rincén - Velasco)

o What about general tropical varieties?
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many thanks

linearity

Papers available at:
http://math.sfsu.edu/federico
http://front.math.ucdavis.edu
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