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I’ll talk about many people’s work, including my coauthors,
students, and teachers:

Marcelo Aguiar, Carolina Benedetti, Adam Boocher, Federico
Castillo, Graham Denham, Jeff Doker, Laura Escobar, Chris Eur,
Alex Fink, June Huh, Carly Klivans, Alex Postnikov, Vic Reiner,
Felipe Rincón, Gian-Carlo Rota, Mario Sanchez, José Samper,
Richard Stanley, Bernd Sturmfels, Mariel Supina, Lauren
Williams, and so many others.

¡Gracias! Thank you! It is a joy to learn with you all.

Summary.
• Matroids are geometric.
• This helps geometry and combinatorics.
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Matroids

Goal: Capture the combinatorial essence of independence.

Motivating example:
E= set of vectors in a vector space V
B = collection of subsets of E which are bases of V

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B = {abc,abd ,abe,acd ,ace}

Exchange Property:
If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. (Nakasawa, Whitney, 1935)
A set E and a collection B 6= /0 of subsets of E form a
matroid if they satisfy the Exchange Property.
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Many matroids in “nature" 7→ many applications!

Intended examples:

1. Linear algebra
E= set of vectors in V
B = bases of V in E

2. Graph theory
E= edges of a connected graph G.
B = spanning trees of G.

E = abcde
B = {abc,abd ,abe,acd ,ace}

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.
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Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

Unintended examples:

3. Field theory (algebraic independence)
4. Matching theory (e.g. jobs↔ people)
5. Routing theory (non-intersecting paths)
...and many, many, many others.

The unintended examples are equally fundamental to the theory.
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Are matroids geometric?

Definition. (Nakasawa, Whitney, 1935)
A set E and a collection B 6= /0 of subsets of E form a matroid if:
For all A,B ∈B and a ∈ A−B, there exists b ∈ B−A such that (A−a)∪b ∈B.

A linear matroid comes from a set of vectors. Are they all linear?

(linear matroids) vs. (all matroids):

• Some matroids are non-linear. (Whitney, 35)
• 100% of matroids are non-linear. (Nelson, 18)

(But almost any matroid we think of is linear.)
• Is there a “missing axiom" for linearity? No. (Mayhew et al, 14)

This is not a flaw!
Non-linear matroids are fundamental to the (geometric) theory.
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The geometry of geometries.
My main point.
(All) matroids are natural geometric objects.

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

Today, I will share (a non-exhaustive sample of) four geometric models of
matroids. For each one, I will discuss:
◦ Definition
◦ Geometric motivation
◦ How it helps us understand matroids
◦ Applications
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Model 1: Matroid polytopes

Def. (Edmonds 70; Gelfand Goresky MacPherson Serganova 87)
The matroid polytope of a matroid M on E is

PM = conv{eB : B is a basis of M} ⊂ RE

where eB is the 0−1 indicator vector of B.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)
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E = abcde
B = {abc,abd ,abe,acd ,ace}
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Motivation: Toric Geometry and Optimization.

The matroid polytope of M is PM = conv{eB : B is a basis of M}.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

10110

10101

11010

11001 11100

E = abcde
B = {abc,abd ,abe,acd ,ace}

Matroid polytopes in “nature":

1. Optimization. (Edmonds 70)
For c : E → R, find the bases {b1, . . . ,br} of minimal cost c(b1) + · · ·+ c(br ).

2. Algebraic geometry. (Gelfand Goresky MacPherson Serganova 87)
Understand the action of the torus (C∗)n on the Grassmannian Gr(k ,n).
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A Lie theoretic characterization of matroids

Theorem. (GGMS 87) A collection B of r -subsets of [n] is a
matroid if and only if every edge of the polytope

PM = conv{eB : B ∈B} ⊂ Rn

is a translate of vectors ei −ej for some i , j .
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ij : ei −ej

Def. A matroid is a 0-1 polytope with edge directions ei −ej .

From this geometric viewpoint, all matroids are equally natural.
Matroids provide the correct level of generality.
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Applications.

1. Deg(torus orbit in Grk ,n) = Vol(matroid polytope).

• combinatorial formula (FA-Benedetti-Doker 10)

2. Matroids form a Hopf algebra via ⊕, /, \. (Joni-Rota 78)

• antipode(M) = ± ∑
PN face of PM

(−1)dim(PN )N (Aguiar-FA 17)

= ± Int(PM ) (FA-Sanchez 22)

3. {ei −ej} is the root system for the Lie algebra sln. Other types?

• Coxeter matroids (Gelfand-Serganova 87)
• generalized Coxeter permutahedra (FA-Castillo-Eur-Postnikov 19)

4. Matroid subdivisions: If PM cannot be subdivided into PM ′s, then M has
finitely many linear representations over any fixed field. (Lafforgue 03)

• matroid valuations (Speyer 04, FA-Fink-Rincón 07, Derksen-Fink 09)
• Coxeter matroid valuations (Eur-Sanchez-Supina 19)
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Model 2: Matroid fan (Bergman fan)

Flats of a matroid: spanned sets

F = { /0, a,b,c,de, ab,ac,ade,bcde, abcde}

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

Ø

decba

bcdeadeacab

abcde

de

c

b

a

bcde

ade

ac

ab

Definition/Theorem. (Sturmfels 02, FA–Klivans 06)
The matroid fan ΣM of a matroid M is the polyhedral fan with
• rays: eF := ef1 + · · ·+ efk for each flat F = {f1, . . . , fk}
• faces: cone{eF : F ∈F} for each flag F = { /0(F1 ( · · ·(Fl (E}.
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Motivation: Tropical Geometry

An algebraic variety V tropicalizes to a polyhedral complex
Trop(V ) that roughly captures its behavior at infinity:

TropV = lim
t→∞
{logt (|z1|, . . . , |zn|) : (z1, . . . ,zn) ∈ V} for V ⊆ (C∗)n.

de

c

b

a

bcde

ade

ac

ab

Theorem. (FA–Klivans 06) Let V ⊆ (C∗)n be a linear space and M(V )
be its matroid. The tropicalization of V is the matroid fan of M(V ):

Trop(V ) = ΣM(V ).

It is (the cone over) a wedge of |µ(M(V ))| spheres.
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A tropical characterization of matroids

A tropical fan is a weighted polyhedral fan with 0-tension.
It has a tropical degree, and AlgDeg(V) = TropDeg(Trop V).

Theorem. (Fink 2013)
A tropical fan has degree 1 if and only if it is a matroid fan.

de

c

b

a

bcde

ade

ac

ab

Definition. A matroid is a tropical fan of degree 1.

From this geometric viewpoint, all matroids are equally natural.
Matroids provide the correct level of generality!
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Applications.

1. The Chow ring of the Bergman fan ΣM satisfies the Kähler package, as if it
were the cohomology ring of a smooth projective variety. (!!!) This implies:
7−→ f -vector of BC(M) is log-concave (Rota 70 7→ Adiprasito-Huh-Katz 18)

de

c

b

a

bcde

ade

ac

ab

2. Tropical manifolds: tropical varieties that look locally like matroid fans.

(Mikhalkin, Rau, Shaw, ..., 2014–)

3. Chern–Schwartz–MacPherson classes of matroids and tropical manifolds.
(López de Medrano–Rincón–Shaw, 2020)
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2. Tropical manifolds: tropical varieties that look locally like matroid fans.

(Mikhalkin, Rau, Shaw, ..., 2014–)

3. Chern–Schwartz–MacPherson classes of matroids and tropical manifolds.
(López de Medrano–Rincón–Shaw, 2020)
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Model 3: The conormal fan

Theorem. If B is a matroid on E , then B⊥ = {E −B : B ∈B}
is also a matroid on E , the orthogonal or dual matroid M⊥.

This generalizes:

• Dual graphs:
abe spanning tree of G

l
cd spanning tree of G∗

• Orthogonal complements:
abe basis of W

l
cd basis of W⊥

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

A theorem in matroid theory gives us theorems in � 5 areas!

Theorem. If M = (E , B) is a matroid, then M⇤ = (E , B⇤) is the
dual matroid, where

B⇤ = {E \ B : B is a basis of M}

Examples. GRAPHS.

• If M is the matroid of a planar graph G, then M⇤ is the
matroid of the dual graph G⇤.
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B⇤ = {def , cef , cdf , bef , bdf}.W = rowspace

0 1 0 .5 1
0 0 1 .5 1
1 0 0 0 0


W⊥ = rowspace

[
0 1 1 0 −1
0 0 0 2 −1

]

Definition. (FA-Denham-Huh, 16)
The conormal fan ΣM,M⊥ of M is (a certain rather subtle subdivision of) ΣM×ΣM⊥ .
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Motivation: Lagrangian geometry

Varchenko’s variety of critical points of V is

X(V ) = closure of PV ×PV⊥ ⊆ CPn−1×CPn−1

(x ,y) 7−→ (x ,xy)

Closely related:
- incidence varieties in projective geometry,
- conormal varieties in Lagrangian geometry,
- maximum likelihood degrees in algebraic statistics.

Theorem. (FA–Denham–Huh 17)
Let PV ⊆ CPn−1 be a linear space and M(V ) its matroid. The variety of
critical points of V tropicalizes to the conormal fan of M(V ):

Trop(X(V )) = ΣM(V ),M(V )⊥ .
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A Lagrangian characterization of matroids?

We don’t know one yet.
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Applications.
1. The Chow ring of the conormal fan ΣM,M⊥ satisfies the Kähler package as
well. (!!!) Proving it requires significant extra work. It implies:
7−→ h-vector of BC(M) is log-concave (Brylawski 82 7→ FA-Denham-Huh 22)

2. Lagrangian interpretation of matroid CSM classes, analogous to
Sabbah’s in classical Lagrangian geometry. (FA-Denham-Huh 22)

ΣM,M⊥ −→ ΣM

characteristic cycles 7−→ CSM classes

3. A rich Lagrangian combinatorics of matroids arises.
(FA-Denham-Huh 22)

4. Two new polytopes with an elegant combinatorial structure.
• Harmonic polytope (FA-Escobar 21)

3n−3 facets, (2n)!/2n vertices
• Bipermutahedron (FA 22)

3n−3 facets, n!(1+ 1
2 + 1

3 + · · ·+ 1
n ) vertices
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Model 4: The augmented matroid / Bergman fan

Definition. (FA-Denham-Huh, 2016)
The augmented matroid fan is the fan in REtE with
• rays: di for each i ∈ E , eF for each flat F
• cone(I,F) := cone({di}i∈I ∪{eF}F∈F) for I independent, F flag

such that I ⊂ F for all F ∈ F.

Analogously to the matroid fan,

Theorem (Bullock-Kelley-Reiner-Ren-Shemy-Shen-Sun-Tao-Zhang 21)
The augmented Bergman fan of M is (the cone over) a wedge of |B(M))|
spheres.
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Motivation: Schubert varieties of matroids

The Schubert variety of a linear space V ⊂ Cn is

Y (V ) = closure of V in embedding Cn ↪→ (P1)n.

(FA–Boocher 16)

The augmented Bergman fan is a tropical analog of Y (V ).

Intersection cohomology IH(M) of M:
- M linear: study Y (V ) and its resolution of singularities.

(Huh-Wang 17)
- M general: extend the definition above combinatorially.

(Braden-Huh-Matherne-Proudfoot-Wang 22)
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The augmented Bergman fan is a tropical analog of Y (V ).

Intersection cohomology IH(M) of M:
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(Huh-Wang 17)
- M general: extend the definition above combinatorially.

(Braden-Huh-Matherne-Proudfoot-Wang 22)
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An augmented characterization of matroids?

We don’t know one yet.
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Applications.
1. The intersection cohomology of M satisfies the Kähler package as well.
(!!!) Proving it requires significant extra work. It implies:
7−→ lattice of flats of M is top heavy

(Dowling-Wilson 74 7→ Braden-Huh-Matherne-Proudfoot-Wang 22)

2. The variety Y (V ) has many good properties controlled by M(V ). Its ideal is
robust: minimally generated by a universal Gröbner basis.

(FA–Boocher 16)

3. Gröbner theory leads to rich topological combinatorics of matroids.
(FA-Castillo-Samper 16)
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Geometry and Combinatorics. Two visionary remarks.

Gelfand–Goresky–MacPherson–Serganova, 1987

R. C. Bose (quoted by Kelly–Rota, 1973)

Today these remarks ring true more than ever.
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many thanks

muchas gracias

• More details and references are in my Proceedings of ICM contribution.
• These slides are on my website.
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