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Lecture 45 real video 53 min. Consider the hyperplanes bisecting the edges of a matroid
polytope. The reflection group generated by the reflections across these hyperplanes is finite - it is a product
of symmetric groups. This is an extremely rare phenomenon: the (irreducible) finite reflection groups can
be classified into four infinite families and six exceptional examples. These objects appear in many
different fields of mathematics. This suggests the ongoing study of "Coxeter matroid polytopes" and
"Coxeter matroids"- a larger family which includes all matroid polytopes and all regular polytopes as
examples.

Lecture 44 real video 54 min. We characterize the facets of a matroid polytope. We show that the
matroid polytopes of M/i and M\ are the faces x_i=1 and x_j=0 of the matroid polytope of M. We show
that a matroid and its dual have congruent polytopes. Conversely, a matroid polytope essentially determines
the matroid up to duality, loops, and coloops.

Lecture 43 real video 52 min. We define the connected components of a matroid and show that
the codimension of the matroid polytope P_M is the number of components of M.

Lecture 41 real video 51 min. We present the inequality description of a matroid polytope, and

use linear programming duality to prove it.

Lecture 40 real video 57 min. We prove that every basis of M gives a vertex of P_M, and present
(without proof) the inequality description of P_M. We conclude with an explanation of linear programming
duality.

Lecture 39 real video 52 min. After a crash course on polytopes, we define the matroid polytope
P_M of a matroid M.

Lecture 38 real video 52 min. We give an interpretation of the coefficients of the Tutte
polynomial. This gives a nice formula for the Tutte polynomial of the Catalan matroid. As a consequence
we get results about the combinatorics of Dyck paths.

Lecture 37 real video 57 min. A knot is an embedding of a circle in RA3. It can be represented by
a knot diagram on the plane D, or by a signed planar graph S(D). Two knot diagrams D and E represent the
same knot if and only if one can get from D to E via Reidemeister moves. To prove that two knot diagrams

represent different knots, one uses knot invariants such as the Jones polynomial. The Jones polynomial of
an alternating knot D is an evaluation of a Tutte poynomial of the graph S(D).

Lecture 36 real video 50 min. We define the Hamming code, which is the largest possible code
that can detect AND correct one error.

Lecture 35 real video 52 min. Error-correcting codes allow us to transmit messages over noisy
channels. Linear codes are very useful ones, and their weight enumerator is given by a Tutte polynomial.
MacWilliams's identity gives a powerful relation between a linear code and its dual; it follows from matroid
duality.

Lecture 34 real video 52 min. The probability of reliability of a network is an evaluation of its

Tutte polynomial. If M and N are matroids dual to each other, then T_M(x,y) = T_N(y,x). Tutte
polynomials can be computed by solving an enumerative problem over a finite field.

Lecture 33 real video 52 min. The Tutte polynomial T_M of a matroid M easily determines: the
number of bases, of independent sets, of spanning sets, of elements, the rank, and the characteristic
polynomial of M. The Tutte polynomial of a graph determines its chromatic and flow polynomials.
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Lecture 32 real video 51 min. Many interesting invariants of a matroid are called "Tutte-

Grothendieck invariants" because they satisfy the same recursive formula. These are all evaluations of one
T-G invariant, which is "the mother of all T-G invariants": the Tutte polynomial T_M(x,y). We discuss
how you can compute this polynomial recursively or directly.

Lecture 31 real video 53 min. The finite field method is a very useful way to compute

characteristic polynomials of arrangements. We prove it and apply it to several arrangements.
Lecture 30 real video 52 min. We give two proofs of Zaslavsky's theorem. The first one is based

on the deletion-contraction recursion. The second one is a topological argument, based on computing Euler
characteristics.

Lecture 29 real video 54 min. We give a formula for the Moebius function of the lattice of flats

of a matroid. We obtain Whitney's formula for the characteristic polynomial of a matroid. We use it to
prove the deletion-contraction formula for characteristic polynomials of matroids.

Lecture 28 real video 53 min. We prove the Moebius inversion formula. We state Zaslavsky's

theorem for the number of regions (and bounded regions) of a hyperplane arrangement in a real vector
space.

Lecture 27 real video 54 min. We compute the Moebius function of the lattice of flats of a

uniform matroid. We define the two-variable Moebius function of a poset, and state the Moebius inversion
formula. We see how this generalizes the Moebius inversion formula of number theory, and the inclusion-
exclusion formula of combinatorics. (Note. The microphone is off for the first 20 minutes, sorry...)

w real video 51 min. We state some known and unknown facts about algebraic matroids.

We then start a new topic: enumeration in matroids. We define the Moebius function and characteristic
polynomial of a graded poset. We discuss their relationship with counting proper colorings of a graph.

+ | Lecture 24 real video 52 min. We prove Desargues's theorem, and use it to construct another
non-linear matroid: the non-Desargues matroid. We define algebraic matroids.
m Lecture 23 real video 53 min. We discuss the problem of characterizing the matroids that are

linear over (at least one)/(a fixed)/(every) field. We see two matroids which are not linear. We discuss the
affine representation of a linear matroid.

Lecture 22 real video 53 inin. We can prove a matroid is not graphical by finding a non-
graphical matroid "living inside it" (as a minor). Tutte proved there are exactly five obstructions to being
graphical. We knew three of them already, and we discuss the other two: the Fano matroid and its dual.
m Lecture 21 real video 57 miin. We prove that minors of linear matroids are linear. Minors of

transversal matroids aren't necessarily transversal. Gammoids are the smallest class which contains
transversal matroids, and is closed under minors and duals.

m Lecture 20 real video 44 min. We describe the rank function of a dual matroid. We see how

deletion and contraction work for graphical and linear matroids. We conclude that minors of graphical
matroids are graphical, and minors of linear matroids are linear.

Lecture 19 real video 50 min. We see how to view a matroid pictorially as a rank function on a
hypercube. We use this to define deletion, contraction, and minors.

Lecture | Lecture 18 real video 53 min. We finish the proof that geometric lattices are in one-to-one
correspondence to simple matroids. We prove that geometric lattices are coatomic.
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LM real video 53 min. A lattice is geometric if and only if it is the lattice of flats of a Qgg&g real video 52 min. We prove that vector configurations, graphs, and matching problems
matroid. give rise to three families of matroids called linear, graphical, and transversal.

Lecture 16 real video 53 min. The lattice of flats of a matroid is a lattice, it is graded, it is
semimodular, and it is atomic.

Le_ctuﬂ real video 53 min. After discussing administrative aspects, [ introduce some motivating
examples for the course. We discuss three problems in linear algebra, graph theory, and matching theory

Lectuge 15 real video 53 min. We define posets and lattices and study some examples. We define which are superficially different, but are very closely related.

the lattice of flats of a matroid.

222! Course advertisement real video 74 min.

Lecture 14 real video 50 min. We prove that matroids satisfy the four closure axioms, and state
that these axioms characterize matroids.

Lecture 13 real video | Notes 53 min. We define the rank function of a matroid, prove the rank
axioms, and sketch a proof that they give another characterization of matroids. We define the closure
operator of a matroid and state the closure axioms. (Note. Unfortunately the motor on the camera is off for
the first 19:40 minutes. Follow the audio with the lecture notes "lecturel3a” and "lecture13b" in the link
above.)

Lecture 12 real video 53 min. We define routings in a directed graph. We use them to define

cotransversal matroids, and state that they are precisely the duals of transversal matroids. We define the
intersection poset of a hyperplane arrangement.

Lecture 11 real video 50 min. We prove that graph duality is an instance of matroid duality: If G
is a plane graph and G* is its dual, then M(G*) = M(G)*. We get a proof of Euler's formula v-e-+f=2, We
state Whitney's 2-isomorphism theorem, which describes when two different graphs have the same matroid.
lﬂu&m real video 53 min. Matroid duality generalizes graph duality. We introduce the dual of
a plane graph and its properties. We discuss the Four Color Theorem.

Lecture 9 real video 53 min. For linear matroids, duality is orthogonality. We describe the
matroid of a subspace V of a vector space. (A better description is in the lecture notes on the course

website.) If M is the matroid of V, we prove that the dual matroid M* is the matroid of the orthogonal
complement of V.

Lecture 8 real video 53 min. We prove that dual matroids are in fact matroids. We discuss what
duality means for linear and graphical matroids.
Lecture 7 real video 53 min. We prove (one direction of) the equivalence between the axiom

systems for circuits and independent sets. We define (without proof) dual matroids. We define fundamental
circuits, and prove an alternative basis exchange lemma.

Lecture 6 real video 53 min. After some comments on axiom systems in general, we define the
circuits of a matroid, and propose an axiom system for them.

Lecture 5 real video 53 min. We introduce the axiom system for the collection of bases of a
matroid, and prove that it is equivalent to the axiom system for independent sets.

Lecture 4 real video 53 min. We present, without proof, Kirchhoff's matrix tree theorem for the

number of spanning trees of a graph. We show that the basis of minimum weight of a matroid can be found
using the greedy algorithm. In fact, matroids are the simplicial complexes where this algorithm works.

Lecture 3 real video 52 min. We define bases of a matroid and show they have the same size. We
discuss what this means for linear, graphical, and transversal matroids.
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