Lecture ] <43 min. This is the first lecture of the Spring 2008 course on Coxeter groups,
taught jointly at San Francisco State University and the Universidad de Los Andes in Bogota, Colombia.
We discuss three ways of thinking about the symmetric group S_3: combinatorially in terms of
permutations or wiring diagrams, algebraically in terms of generators and rejations, and geometrically in
terms of reflections

mtel Lstmg cxamples
Lecture3 - - i - 47 min. We introduce a conerete combinatorial realization of an arbitrary
Coxater group (W,S) - its "signed permutation representation”.

/] Lecture 4 53 min. We prove the signed permutation presentation of a Coxeter group.
We pay specml attention to the symmetric group, where wiring diagrams make this construction very
explicit.

Lecture 5 - . - 49 inin. We proved that the length of w in (11", &) can be read off from the
signed permutation presentation of 7 (11”}. It equals the number of reflections that 7,1 makes negative.
These are the reflections t that shosten 70 ; {(tw) < L(w). For the symmetric group, these are the
inversions of the permutation w, )

Lecture 6« .+ . 50 min. We prove the exchange and deletion properties for Coxeter groups,
and several useful consequences of them.

Lgctuiz 55 min. We prove that for a group W and a set S of generators of order 2,

the following three conditions are equivalent: (W,S) is a Coxeter system, it satisfies the exchange property,
and it satisfies the deletion property. We use this to prove that the symmetric group is a Coxeter group.

Lecture 8 - 49 min. We discuss the geometric tepresentation of a Coxeter group in terms

of reflections, and use it to prove two important facts about a Coxeter system (W,S) with matrix m: the
ordel' of ss' is m(s,8"), and S is a minimal set of generators for W,

ecture 9 49 imin. We introduce the Bruhat order of a Coxeter group. For the
Symmemc group, this order describes "how special” the relative positiong of two flags is.
! ecture 10 54 min. We prove that the Bruhat order is graded, and that ¢4 <
only if a reduced word for v contains a reduced word for u as a subword,

Lecture 11 43 1in. We prove the "lifting property" of the Brubat order. We usg it to
conclude that any finite Coxeter group has a unique maximal element, whose properties we study.

.| Lecture 12 50 min. We prove that multiplication by the longest element of a finite

Coxetel group reverses the Bruhat order. Then we define parabolic subgroups and show they are Coxeter
groups. (Note. The microphone is off for the first 12 minutes.)

Lecture 13 53 min. We introduce and describe the parabolic quotient WAJ, which
consists of the unique minimum elements in each of the left cosets of the parabolic subgroup W_T.
Lecture 14 46 1min. We compute the Poincare series of the symmetric group, and
present a recursive technique for computing the Poincare series of an arbitrary Coxeter group.

Lecture 15 54 min. We introduee the Mobius function of a poset. We define Eulerian
poseIS' two important examples are the face poset of a polytope and any interval in a Bruhat order.

+ | Lecture 16 . + <7 min. We introduce the weak order of a Coxeter group and some of its
propertnes.

51 min. We define Coxeter gystems and Coxeter groups, and discuss several
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[Tectnve | Lecture 17 - o> i o 50 min. We prove that the weak order is a meet-semilattice.

[Tacture. | Lecture 18 - - 52 min. We digcuss various properties of the weak order of a Coxeter
group. We illustrate how the weak order has a very nice and useful geometric interpretation.

Lecture 19 52 min. We prove the geometric representation of a Coxeter group. (Note.
The proof of Lecture 8 had some serious mistakes - my apologies.)

m Lecture 20 50 min. We define root systems and explain how W acts on them. If ¢y is
the simple root corresponding to the generator 5, we show that g0y == () if L{2es) > I(z) and

wa < QI H{ws) < Ww)

Lectuy. | Lecture

n the geometric representation. Then we show the bijective couespondcnce between positive roots,
algebraic reflections in W, and geometric reflections in the geometric representation of W.

Lecture 22 46 min. If (v is the positive root corresponding to the reflection [ , we
show that sy = (if and only if (i) > (( 1) . We then discuss the reflection representation of a
finite Coxeter group, and the fundamental domain.

Lecture 23 52 min. We describe the subgroup of W fixing a point or a subset of V in
the reflection representation. For W finite, the hyperplanes orthogonal to the roots divide V into chambers

which correspond to the elements of W, and the faces of the arrangement are labeled as conjugates of the
faces of the fundamental chamber,

Taetiy | Lecture 24 53 min. We define the Coxeter complex of W and show how it can be

Iabelled by the left cosets of the parabolic subgroups of W. Then we talk about the complications that arise
in the reflection representation of an infinite W, and how to golve them using the Tits cone,

m _gc_tyle_b_ 50 min. We define the depth of a root, and the root poset, We briefly
discuss the W-Catalan numbers.
m Lecture 26

dominate any other roots.

Lecture 27 -+ min. We prove that small roots form an order ideal in the root poset, We

show that in finite Coxeter groups every root is small. We state the theorem that any finitely generated
Coxeter group has finitely many small roots.

Lecture 28 . 50 min. We construct a finite automaton which recognizes the language of

reduced words of any finitely generated Coxeter group.

Lecture 29 50 min. We finish the proof of automaticity of Coxeter groups, We discuss

the transfer matrix method for counting paths in graphs. We conclude that the generating function for
reduced words in a Coxeter group is rational.

Lecture 30
Lecture 3|

Lecture 32 53 min. We introduce crystallographic root systems, and show that they
correspond to integer Cartan matrices.

Toctpe | Lecture 33

root system.

Lecture 34 :

crystallographic root systems.

47 min. We prove that w send exactly 1(w) positive roots to negative roots

51 min. We define small roots and characterize them as those which do not

53 min. We define root systems and give various examples.

<48 min. We prove that a root system gives rise to a Coxeter system.

52 min. We describe the Coxeter group corresponding to a crystallographic

52 min. We characterize integer Cartan matrices, or equivalently




Qc_nu-_g_,ﬁ 51 min. We characterize the Coxeter groups that correspond to

crystallographic root systems,

Lecture 36 51 min. We review some facts about bilinear forms. We begin to prove that
a Coxeter group is finite if and only if its associated bilinear form is positive definite.

Lecture 37 1" I'Notes 52 min. We prove some basic facts about the representation theory
of finite groups. (The camera motor is off - please seg the lecture notes.)

'Qcture 38 © - 50 min. We complete the proof of the theorem that W is finite if and only
if its associated bilinear form is positive definite.

geture 30 ' - 50 min. We prove two characterizations of positive definite symmetric
matrices. :

L,gcture 40 50 min. We begin the classification of finite Coxeter groups.

Lgcture 41 45 min. We complete the classification of finite Coxeter groups.

Lecture 42+ - ... 42 inin. We classify the regular polytopes.



