,| Lecture 2 54 min. We prove Hilbert's basis theorem, Then we define monomial

ordetings, initial ideals, and Groebner bases. (My apologies for the technical difficulties, unfortunately the
video has no sound!)

Lecture 4 ¢« 50 min. How does one recognize a Grobner basis? How does one construct

a Grobner basis? We discuss, Buchberger's criterion and algorithmm, which give nice and simple answers
to these questions. Then we discuss minimal and reduced Grobner bases,

Lecture 5 47 min. We prove that every ideal I has a unique reduced Grobner basis. We

discuss two applications: determining whether two ideals are equal, and solving systems of polynomial
equations by elimination. (The camera starts moving after about 22 minutes, sorry!!!)

Lecture 6: - - 53 min. We prove that you can use Grobner bases to compute elimination
ideals, and to compute the intergection of two ideals in a polynomial ring.
Lecture 7 : - 53 min. Computing syzygies (linear relations with polynomial coefficients)

between polynomials is easy using Grobner bases. I state Schreyer's theorem, and review some basic facts
about modules.

Lecture 8 .- =i .+~ - 53 min. I describe term orders and Grobner bases in a free module F over a
polynomial ring. I state and begin to prove that if $G$ is a Grobner basis for a submodule of F then the
"basic syzygies" of G generate the module of all syzygies of $G$; and in fact, they are a Grobner basis for

free resolutions of madules.

53 min. We complete the proof of Schreyer's theorem, and begin to discuss

.| Lecture 11 - 53 min. We define free resofutions of modules and prove Hilbert's syzygy

theorem.

1 ecture 12 - 52 min. We define the Hilbert functions and series of graded rings and
modules, and compute some examples.

Lecture 13 - 53 min. We discuss finely graded modules and their Hilbert series, and
carefully catry out some examples.

Lecture 14 51 min. We show how to compute the Hilbert series of a module from a
resolution and discuss several applications of these ideas.

.| Lecture 15 54 min. We prove Macaulay's theorem that M and in(M) have the same
Hllbelt series, and state his characterizations of Hilbert series of graded 1ings satisfying some mild
hypotheses, (The microphone ran out of battery at 43:30, sorry! You can still hear what I'm saying if you
turn the volume up.)

Lecture 16 -~ =& - 53 min. We begin the study of monomial ideals. We prove the
corraspondence between squarefree monomial ideals and simplicial complexes, and illustrate with
exnmples

«|Lecture 17 . 51 min. We give a decomposition of Stanley-Riesner ideals into prime
1deals and prove a formula for the Hilbert series of Stanley-Reisner rings.

.| Lecture 18 - 51 min. We prove the formula for the coarse Hilbert series of a Stanley-
Relsnel ring. Then we discuss the general idea behind the field of algebraic topology.

Lecture 19

compute an example.

Lecture 20

+- 53 min. We define the homology groups of a simplicial complex, and

Tchime 52 min. We continue to discuss some general facts about homology and

compute more examples.

Legture 21 - * 51 min. We state two descriptions of the graded Betti numbers of a
monomial ideal M; one in terms of Tor(M,F), and another one in terms of simplicial complex homology,
Lecture 22 - 52 min. We prove the Tor characterization of Betti numbers, and begin to
prove the homological interpretation of them.

Lecture 23 51 min. Computing the Betti numbers of a monomial ideal [ is equivalent

to computing the homology of the upper Koszul complexes of 1. For squarefree I, Hochster's theorem tells
us that this is just the homology of the links of the Alexander dual simplicial complex.

Lecture 24 - 53 min. We discuss algebraic and topological properties of Alexander

duality, and use them to state Hochster's theorem, which deseribes the Betti numbers of the Stanley-Reisner
ring of a simplicial complex in terms of the cohomolegy of its links.

Lecture 25 - . - 51 min. We see how the general linear group GL (and its Borel subgroup B
and torus subgroup T) acts on the ring of polynomials, and discuss the ideals of R which are invariant
under these actions. The GL-fixed ideals are the powers of the maximal ideal. The T-fixed ideals are the

monomial ideals. The B-fixed (or "Borel fixed monomial ideals") are a very nice family of non-squarefree
monomial ideals that we will discuss next time,

ml_@ﬂ__,_le% 53 mnin. We discuss how Borel-fixed ideals occur as generic initial ideals.
We compute their Hilbert series and discuss other nice properties.

m__chi?& arvites 22 min. We discuss polytopes, polyhedral complexes, and their chain
complexes.

Lecture 30 : -+ + 49 nin. We show a way to find a free resolution of a monomial ideal I "by

picutre", using a labelled polyhedral cell complex X. We characterize the labelled cell complexes that
support such a cellular resolution, and describe the Hilbert series of I in terms of the graded Buler
characteristic of X.

I Lot | Legture 31 52 min. We show how the Betti numbers of a monomial ideal can be
obtained from a cellular resolution.
Lecture 32 52 min. We discuss two examples of cellular resolutions: Taylor
resolutions, and permutahedron resolutions.
_ngu_re_fﬁ vt 49 min, We discuss the hull resolution, a cellular resolution of an arbitrary
monomial ideal in n variables which has length at most $n$.
M : i 49 min. We begin by discussing how to view hull complexes for artinian
monomial ideals. Then we discuss generic monomial ideals.

Lecture 35 - < i+ 53 min. Every monomial ideal I in n variables has a cellular resolution by a

simplieal complex, of length at most n, When I is generic, the Scarf complex of I provides a minimal free
resolution, When L is not generic, the Scarf complex of a generic deformation of it gives a resolution,

Lecture 36

Tty | Legture 37

51 min, We begin to discuss semigroup algebras and lattice ideals.

50 min. We prove that a semigroup ring is isomorphic to the quotient of the
polynomial ring by the lattice ideal, and offer several characterization of affine semigroups.
t Lty 1Lecture 38 42 min. We show that a semigroup has a unique minimal set of generators,

For saturated semigroups this is called the Hilbert basis. Then we discuss some interesting properties of
semigroups of integers.

Lecture 39 -

30 min. We begin to study initial ideals and initial complexes of lattice

S,

3

o e

o

nb“
/

/7@%}1«’”
v

(o

o



ideals.

Lecture 40 53 min. We describe the initial ideal of a lattice ideal in terms of an
optimization problem in integer programming. We also describe the initial complex of a lattice ideal in
terms of regular subdivisions.

' Lecture 41 50 min. We present a topological/combinatorial formula for the graded
Betti numbers and the Hilbert series of a lattice ideal.



