Problem 6:

Let e_i, f_j be the standard unit vectors in $\mathbb{R}^m, \mathbb{R}^n$ (resp.), $v_{ij} = e_i \times f_j$, and $\Delta_{m-1} \times \Delta_{n-1} = conv\{v_{ij} : 1 \le i \le m, 1 \le j \le n\}$.

Let $\Gamma := \{ \text{ staircase from } (1,1) \text{ to } (m,n) \}$, so Γ has $\binom{m+n-2}{m-1}$. For each $S \in \Gamma$, define $P_S := conv\{v_{ij} : (i,j) \in S\}$. Lets prove that $\{P_S : S \in \Gamma\}$ is a triangulation of $\Delta_{m-1} \times \Delta_{n-1}$:

i)Lets prove that P_S is a simplex for all $S \in \Gamma$:

To prove this is sufficient to show that the m + n - 1 vertices of P_S are affinely independent (i.e they doesn't lie in a m + n - 3-dimensional affine space). Name the vertices of P_S , $w_1, w_2, ..., w_{m+n-1}$, according to the order the appear in the staircase, so $w_1 = v_{11}$ and $w_{m+n-1} = v_{mn}$. Suppose we have $\lambda_1 w_1 + \lambda_2 w_2 + ... + \lambda_{m+n-1} w_{m+n-1} = 0$ for some λ 's such that $\lambda_1 + \lambda_2 + ... + \lambda_{m+n-1} = 1$. Let k be the greatest index such that $\lambda_k \neq 0$, then we can write $\lambda_1 w_1 + \lambda_2 w_2 + ... + \lambda_{k-1} w_{k-1} = -\lambda_k w_k$. If we write $w_1 = v_{a_1b_1}, w_2 = v_{a_2b_2}, ..., w_k = v_{a_kb_k}$, and remembering that the points $w_1, w_2, ..., w_k$ are ordered according a staircase, we can conclude that one of the following conditions must hold: $a_k > a_i$ for all i < k, or $b_k > b_i$ for all i < k. WLOG assume $a_k > a_i$ for all i < k. Then the a_k -th component of the vector $w_k = v_{a_kb_k}$ is 1, while the a_k -th component of the vectors $w_i = v_{a_ib_i}$ is 0 for all i < k. Therefore we cannot have the equality $\lambda_1 w_1 + \lambda_2 w_2 + ... + \lambda_{k-1} w_{k-1} = -\lambda_k w_k$, where $\lambda_k \neq 0$. This implies that $\lambda_1 w_1 + \lambda_2 w_2 + ... + \lambda_{m+n-1} w_{m+n-1} = 0$ only holds when $\lambda_i = 0$ for all i, so $w_1, w_2, ..., w_{m+n-1}$ are affinely independent.

ii) Lets prove that $\bigcup_{\{S \in \Gamma\}} P_S = \Delta_{m-1} \times \Delta_{n-1}$: For any $x \in \Delta_{m-1} \times \Delta_{n-1}$ write $x = (\alpha_1, \alpha_2, ..., \alpha_m, \beta_1, \beta_2, ..., \beta_n)$. Since $(\alpha_1, \alpha_2, ..., \alpha_m) \in \Delta_{m-1}$, we get that $\alpha_i \ge 0$ for all i, and $\alpha_1 + \alpha_2 + ... + \alpha_m = 1$. Similarly, since $(\beta_1, \beta_2, ..., \beta_n) \in \Delta_{n-1}$, we get that $\beta_j \ge 0$ for all j, and $\beta_1 + \beta_2 + ... + \beta_n = 1$.

Define $A_1 = \alpha_1, A_2 = \alpha_1 + \alpha_2, A_3 = \alpha_1 + \alpha_2 + \alpha_3, ..., A_m = \alpha_1 + \alpha_2 + \alpha_3 + ... + \alpha_m = 1$, and $B_1 = \beta_1, B_2 = \beta_1 + \beta_2, B_3 = \beta_1 + \beta_2 + \beta_3, ..., B_n = \beta_1 + \beta_2 + \beta_3 + ... + \beta_n = 1$. Observe that $0 \leq A_1 \leq A_2 \leq ... \leq A_m = 1$ and $0 \leq B_1 \leq B_2 \leq ... \leq B_n = 1$. We can "mix" the previous sequences in a single ordered chain of lenght m + n, for instance if $A_1 = 0, A_2 = 0.6, A_3 = 0.8, A_4 = 1$, $B_1 = 0.3, B_2 = 0.5, B_3 = 1$, we get $A_1 \leq B_1 \leq B_2 \leq A_2 \leq A_3 \leq B_3 \leq A_4$. Since $0 \leq A_1 \leq A_2 \leq ... \leq A_m = 1$ and $0 \leq B_1 \leq B_2 \leq ... \leq B_m = 1$, there are exactly $\binom{m+n-2}{m-1}$ classes of chains (I mean, chains with the identical order of A_i 's and B_i 's, up two the order of $A_m = B_n = 1$ in the last two places of the chain), that are obtained by selecting the m-1 positions of $A_1, A_2, ..., A_{m-1}$ in the first m + n - 2 places of the chain. For instance $A_1 \leq B_1 \leq B_2 \leq A_2 \leq A_3 \leq B_3 \leq A_4$ and $A_1 \leq B_1 \leq A_2 \leq B_2 \leq A_3 \leq B_3 \leq A_4$ are **diferent** classes of chains, but $A_1 \leq B_1 \leq B_2 \leq A_2 \leq A_3 \leq A_3 \leq A_4 \leq B_3$ are the **same** class.

Therefore the amount of classes of chains is equal to the number of staicases in Γ . Let see the relation. For a given chain construct a staircase as follows:

0) Start at (1, 1).

1) If the first element of the chain is A_1 move to the east, if it is B_1 move to the north. 2) If the k-th element of the chain is of the form A move to the east if it is of the form B move

2) If the k-th element of the chain is of the form A move to the east, if it is of the form B move to the north.

Fix $x \in \Delta_{m-1} \times \Delta_{n-1}$, let C_x be a chain related to x, and let S_x be the staircaes induced by C_x using the previous construction. I claim that $x \in P_{S_x}$:

Write the chain C_x associated to x in the form $C_1 \leq C_2 \leq \ldots \leq C_{m+n}$ (for instance if C_x is the chain $A_1 \leq B_1 \leq B_2 \leq A_2 \leq A_3 \leq B_3 \leq A_4$, then we have $C_1 = A_1, C_2 = A_2, C_3 = B_2, \ldots, C_7 = A_4$). Name the vertices of $P_{S_x}, w_1, w_2, \ldots, w_{m+n-1}$, according to the order the appear in the staircase, so $w_1 = v_{11}$ and $w_{m+n-1} = v_{mn}$. Now, we can check that $x = C_1w_1 + (C_2 - C_1)w_2 + \ldots + (C_{m+n-1} - C_{m+n-2})w_{m+n-1}$. This show that $x \in P_{S_x}$ since $C_1w_1 + (C_2 - C_1)w_2 + \ldots + (C_{m+n-1} - C_{m+n-2})w_{m+n-1}$ is a convex combination of the vertices of P_{S_x} .

For example suppose $x = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta_1, \beta_2, \beta_3) = (0, 0.6, 0.2, 0.2, 0.3, 0.2, 0.5)$ so $A_1 = 0, A_2 = 0.6, A_3 = 0.8, A_4 = 1$, and $B_1 = 0.3, B_2 = 0.5, B_3 = 1$. Then we can take C_x , the chain associated to x, as $A_1 \leq B_1 \leq B_2 \leq A_2 \leq A_3 \leq B_3 \leq A_4$. Using the construction of the staircase from the chain C_x , we get the following order of movements: east, north, north, east, east. This produces the vertices $v_{1,1}, v_{2,1}, v_{2,2}, v_{2,3}, v_{3,3}, v_{4,3}$. Writting the chain C_x in the form $C_1 \leq C_2 \leq \ldots \leq C_7$, observe that $C_1v_{1,1} + (C_2 - C_1)v_{2,1} + \ldots + (C_6 - C_5)v_{4,3} =$

0(1000100) + 0.3(0100100) + 0.2(0100010) + 0.1(0100001) + 0.2(0010001) + 0.2(0001001) =

$$(0, 0.6, 0.2, 0.2, 0.3, 0.2, 0.5) = x$$

iii) Lets prove that $P_{S_1} \cap P_{S_2}$ is a face of both of them. Let $\{v_1, v_2, ..., v_k\} = V(P_{S_1}) \cap V(P_{S_2})$, I claim that $P_{S_1} \cap P_{S_2} = conv\{v_1, v_2, ..., v_k\}$. To prove this I will argue by contradiction. Suppose there exists $q \in (P_{S_1} \cap P_{S_2}) \setminus conv\{v_1, v_2, ..., v_k\}$. Then, there exists $w_h \in V(P_{S_1}) \setminus V(P_{S_2})$ which is component of q, i.e., if we write q as a convex combination of the vertices of P_{S_1} , then the coefficient of w_h , say λ_h is greater than 0 (since P_{S_1} is a simplex, the point q can be written in a unique way as convex combination of the vertices of P_{S_1}). Let $w_h = v_{ij}$. Since $w_h \notin V(P_{S_2})$, there exists $\hat{j} < j$ such that $v_{i,\hat{j}}$ and $v_{i+1,\hat{j}}$ belong to $V(P_{S_2})$ (*Case 1*), or there exist $\hat{i} < i$ such that $v_{\hat{i},j}$ and $v_{\hat{i},j+1}$ belong to $V(P_{S_2})(Case 2)$. These two cases are presented below:

a) Case 1: When we write q as a point in P_{S_1} the condition $\lambda_h > 0$ (which is the coefficient of $w_h = v_{ij}$) implies $A_i > B_{j-1}$. On the other hand, when we write q as a point in P_{S_2} , the existence of $v_{i,\hat{j}}$ and $v_{i+1,\hat{j}}$ in $V(P_{S_2})$, with $\hat{j} < j$, implies $A_i \leq B_{\hat{j}} \leq B_{j-1}$. The conditions $A_i > B_{j-1}$ and $A_i \leq B_{j-1}$ lead us to a contradiction. Therefore $(P_{S_1} \cap P_{S_2}) \setminus conv\{v_1, v_2, ..., v_k\} = \emptyset$, so $P_{S_1} \cap P_{S_2} = conv\{v_1, v_2, ..., v_k\}$. Since P_{S_1} and P_{S_2} are simplexes, then $conv\{v_1, v_2, ..., v_k\}$ is a face of both of them.

b)Case 2: This case is analogous to the previous one. It leads to the contradiction $B_j > A_{i-1}$ and $B_j \le A_{i-1}$.