Problem 6:

Let e_{i}, f_{j} be the standard unit vectors in $\mathbb{R}^{m}, \mathbb{R}^{n}$ (resp.), $v_{i j}=e_{i} \times f_{j}$, and $\Delta_{m-1} \times \Delta_{n-1}=$ $\operatorname{conv}\left\{v_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

Let $\Gamma:=\{$ staircase from $(1,1)$ to $(m, n)\}$, so Γ has $\binom{m+n-2}{m-1}$. For each $S \in \Gamma$, define $P_{S}:=\operatorname{conv}\left\{v_{i j}:(i, j) \in S\right\}$. Lets prove that $\left\{P_{S}: S \in \Gamma\right\}$ is a triangulation of $\Delta_{m-1} \times \Delta_{n-1}:$
i)Lets prove that P_{S} is a simplex for all $S \in \Gamma$:

To prove this is sufficient to show that the $m+n-1$ vertices of P_{S} are affinely independent (i.e they doesn't lie in a $m+n-3$-dimensional affine space). Name the vertices of $P_{S}, w_{1}, w_{2}, \ldots, w_{m+n-1}$, according to the order the appear in the staircase, so $w_{1}=v_{11}$ and $w_{m+n-1}=v_{m n}$. Suppouse we have $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{m+n-1} w_{m+n-1}=0$ for some λ 's such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m+n-1}=1$. Let k be the greatest index such that $\lambda_{k} \neq 0$, then we can write $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{k-1} w_{k-1}=-\lambda_{k} w_{k}$. If we write $w_{1}=v_{a_{1} b_{1}}, w_{2}=v_{a_{2} b_{2}}, \ldots, w_{k}=v_{a_{k} b_{k}}$, and remembering that the points $w_{1}, w_{2}, \ldots, w_{k}$ are ordered according a staircase, we can conclude that one of the following conditions must hold: $a_{k}>a_{i}$ for all $i<k$, or $b_{k}>b_{i}$ for all $i<k$. WLOG assume $a_{k}>a_{i}$ for all $i<k$. Then the a_{k}-th component of the vector $w_{k}=v_{a_{k} b_{k}}$ is 1 , while the a_{k}-th component of the vectors $w_{i}=v_{a_{i} b_{i}}$ is 0 for all $i<k$. Therefore we cannot have the equality $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{k-1} w_{k-1}=-\lambda_{k} w_{k}$, where $\lambda_{k} \neq 0$. This implies that $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{m+n-1} w_{m+n-1}=0$ only holds when $\lambda_{i}=0$ for all i, so $w_{1}, w_{2}, \ldots, w_{m+n-1}$ are affinely independent.
ii) Lets prove that $\cup_{\{S \in \Gamma\}} P_{S}=\Delta_{m-1} \times \Delta_{n-1}$:

For any $x \in \Delta_{m-1} \times \Delta_{n-1}$ write $x=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$. Since $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in \Delta_{m-1}$, we get that $\alpha_{i} \geq 0$ for all i, and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{m}=1$. Similarly, since $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \in \Delta_{n-1}$, we get that $\beta_{j} \geq 0$ for all j, and $\beta_{1}+\beta_{2}+\ldots+\beta_{n}=1$.

Define $A_{1}=\alpha_{1}, A_{2}=\alpha_{1}+\alpha_{2}, A_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots, A_{m}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots+\alpha_{m}=1$, and $B_{1}=\beta_{1}, B_{2}=\beta_{1}+\beta_{2}, B_{3}=\beta_{1}+\beta_{2}+\beta_{3}, \ldots, B_{n}=\beta_{1}+\beta_{2}+\beta_{3}+\ldots+\beta_{n}=1$. Observe that $0 \leq A_{1} \leq A_{2} \leq \ldots \leq A_{m}=1$ and $0 \leq B_{1} \leq B_{2} \leq \ldots \leq B_{n}=1$. We can "mix" the previous sequences in a single ordered chain of lenght $m+n$, for instance if $A_{1}=0, A_{2}=0.6, A_{3}=0.8, A_{4}=1$, $B_{1}=0.3, B_{2}=0.5, B_{3}=1$, we get $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$. Since $0 \leq A_{1} \leq A_{2} \leq$ $\ldots \leq A_{m}=1$ and $0 \leq B_{1} \leq B_{2} \leq \ldots \leq B_{m}=1$, there are exactly $\binom{m+n-2}{m-1}$ classes of chains (I mean, chains with the identical order of A_{i} 's and B_{i} 's, up two the order of $A_{m}=B_{n}=1$ in the last two places of the chain), that are obtained by selecting the $m-1$ positions of $A_{1}, A_{2}, \ldots, A_{m-1}$ in the first $m+n-2$ places of the chain. For instance $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$ and $A_{1} \leq B_{1} \leq A_{2} \leq B_{2} \leq A_{3} \leq B_{3} \leq A_{4}$ are diferent classes of chains, but $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq$ $A_{3} \leq B_{3} \leq A_{4}$ and $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq A_{4} \leq B_{3}$ are the same class.

Therefore the amount of classes of chains is equal to the number of staicases in Γ. Let see the relation. For a given chain construct a staircase as follows:
0) Start at $(1,1)$.

1) If the first element of the chain is A_{1} move to the east, if it is B_{1} move to the north.
2) If the k-th element of the chain is of the form A move to the east, if it is of the form B move to the north.

Fix $x \in \Delta_{m-1} \times \Delta_{n-1}$, let C_{x} be a chain related to x, and let S_{x} be the staircaes induced by C_{x} using the previous construction. I claim that $x \in P_{S_{x}}$:

Write the chain C_{x} associated to x in the form $C_{1} \leq C_{2} \leq \ldots \leq C_{m+n}$ (for instance if C_{x} is the chain $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$, then we have $C_{1}=A_{1}, C_{2}=$ $\left.A_{2}, C_{3}=B_{2}, \ldots, C_{7}=A_{4}\right)$. Name the vertices of $P_{S_{x}}, w_{1}, w_{2}, \ldots, w_{m+n-1}$, according to the order the appear in the staircase, so $w_{1}=v_{11}$ and $w_{m+n-1}=v_{m n}$. Now, we can check that $x=C_{1} w_{1}+\left(C_{2}-C_{1}\right) w_{2}+\ldots+\left(C_{m+n-1}-C_{m+n-2}\right) w_{m+n-1}$. This show that $x \in P_{S_{x}}$ since $C_{1} w_{1}+\left(C_{2}-C_{1}\right) w_{2}+\ldots+\left(C_{m+n-1}-C_{m+n-2}\right) w_{m+n-1}$ is a convex combination of the vertices of $P_{S_{x}}$.

For example suppouse $x=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}\right)=(0,0.6,0.2,0.2,0.3,0.2,0.5)$ so $A_{1}=$ $0, A_{2}=0.6, A_{3}=0.8, A_{4}=1$, and $B_{1}=0.3, B_{2}=0.5, B_{3}=1$. Then we can take C_{x}, the chain associated to x, as $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$. Using the construction of the staircase from the chain C_{x}, we get the following order of movements: east,north,north,east,east. This produces the vertices $v_{1,1}, v_{2,1}, v_{2,2}, v_{2,3}, v_{3,3}, v_{4,3}$. Writting the chain C_{x} in the form $C_{1} \leq C_{2} \leq \ldots \leq C_{7}$, observe that $C_{1} v_{1,1}+\left(C_{2}-C_{1}\right) v_{2,1}+\ldots+\left(C_{6}-C_{5}\right) v_{4,3}=$

$$
0(1000100)+0.3(0100100)+0.2(0100010)+0.1(0100001)+0.2(0010001)+0.2(0001001)=
$$

$$
(0,0.6,0.2,0.2,0.3,0.2,0.5)=x
$$

iii) Lets prove that $P_{S_{1}} \cap P_{S_{2}}$ is a face of both of them. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=V\left(P_{S_{1}}\right) \cap V\left(P_{S_{2}}\right)$, I claim that $P_{S_{1}} \cap P_{S_{2}}=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. To prove this I will argue by contradiction. Suppouse there exists $q \in\left(P_{S_{1}} \cap P_{S_{2}}\right) \backslash \operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Then, there exists $w_{h} \in V\left(P_{S_{1}}\right) \backslash V\left(P_{S_{2}}\right)$ which is component of q, ie, if we write q as a convex combination of the vertices of $P_{S_{1}}$, then the coefficient of w_{h}, say λ_{h} is greater than 0 (since $P_{S_{1}}$ is a simplex, the point q can be written in a unique way as convex combination of the vertices of $\left.P_{S_{1}}\right)$. Let $w_{h}=v_{i j}$. Since $w_{h} \notin V\left(P_{S_{2}}\right)$, there exists $\hat{j}<j$ such that $v_{i, \hat{j}}$ and $v_{i+1, \hat{j}}$ belong to $V\left(P_{S_{2}}\right)$ (Case 1), or there exist $\hat{i}<i$ such that $v_{\hat{i}, j}$ and $v_{\hat{i}, j+1}$ belong to $V\left(P_{S_{2}}\right)($ Case 2). These two cases are presented below:

a) Case 1: When we write q as a point in $P_{S_{1}}$ the condition $\lambda_{h}>0$ (which is the coefficient of $w_{h}=v_{i j}$) implies $A_{i}>B_{j-1}$. On the other hand, when we write q as a point in $P_{S_{2}}$, the existence of $v_{i, \hat{j}}$ and $v_{i+1, \hat{j}}$ in $V\left(P_{S_{2}}\right)$, with $\hat{j}<j$, implies $A_{i} \leq B_{\hat{j}} \leq B_{j-1}$. The conditions $A_{i}>B_{j-1}$ and $A_{i} \leq B_{j-1}$ lead us to a contradiction. Therefore $\left(P_{S_{1}} \cap P_{S_{2}}\right) \backslash \operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=\emptyset$, so $P_{S_{1}} \cap P_{S_{2}}=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Since $P_{S_{1}}$ and $P_{S_{2}}$ are simplexes, then $\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a face of both of them.
b) Case 2: This case is analogous to the previous one. It leads to the contradiction , $B_{j}>A_{i-1}$ and $B_{j} \leq A_{i-1}$.

