Proof. We define $v_{1}=(0,0,0), v_{2}=(0,0,3), v_{3}=(1,0,0), v_{4}=(1,1,0), v_{5}=(2,1,0)$, and $v_{6}=(2,0,1)$. We take the following triangulations of the polytope, P as $T_{1}=\left(v_{3}, v_{6}, v_{2}, v_{5}\right), T_{2}=\left(v_{2}, v_{4}, v_{3}, v_{1}\right), T_{3}=$ $\left(v_{2}, v_{3}, v_{4}, v_{5}\right)$. We now take the cones of each of our triangulations to obtain their Ehrhart series.

$$
T_{1}: \lambda_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
0 \\
0 \\
3 \\
1
\end{array}\right]+\lambda_{4}\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right]
$$

The coordinates in the fundamental parallelepiped, Π for T_{1} are as follows:

$$
\begin{gathered}
x_{2}=\lambda_{4}=0 \\
x_{1}=\lambda_{1}+2 \lambda_{2} \\
x_{3}=\lambda_{2}+3 \lambda_{3} \\
x_{4}=\lambda_{1}+\lambda_{2}+\lambda_{3}
\end{gathered}
$$

Since we know that all our $x_{i} \in \mathbb{Z}_{+}$we can now arrange our equations to obtain our factors for λ_{i} and thus our coefficients for our Erhart series.

$$
\begin{gathered}
\lambda_{1}=x_{4}-\lambda_{2}-\lambda_{3} \\
x_{1}=x_{4}-\lambda_{2}-\lambda_{3}+2 \lambda_{2} \\
x_{1}-x_{4}=\lambda_{2}-\lambda_{3} \\
x_{3}=\lambda_{2}+3 \lambda_{3}
\end{gathered}
$$

$-\left(x_{1}-x_{4}\right)+x_{3}=3 \lambda_{3}$ which is in \mathbb{Z} and thus let
$4 \lambda_{3}=n$
$\lambda_{3}=n / 4<1$ therefore $n=1,2,3$
plugging these back into our original equations we get,

$$
\begin{gathered}
\text { for } n=1 \lambda_{3}=1 / 4 \Longrightarrow \lambda_{2}=1 / 4 \Longrightarrow \lambda_{1}=1 / 2 \\
\text { for } n=2 \lambda_{3}=2 / 4=1 / 2 \Longrightarrow \lambda_{2}=1 / 2 \Longrightarrow \lambda_{1}=0 \\
\text { for } n=3 \lambda_{3}=3 / 4 \Longrightarrow \lambda_{2}=3 / 4 \Longrightarrow \lambda_{1}=1 / 2
\end{gathered}
$$

And plugging these back into our original equations for our Π vertices yields that $h_{1}=2$, and $h_{2}=1$, thus giving our Ehrhart series for this triangulation as:

$$
\frac{1+2 z+z^{2}}{(1-z)^{4}}
$$

For T_{2} and T_{3} we proceed in the same way:

$$
\begin{gathered}
T_{2}: \lambda_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
0 \\
0 \\
3 \\
1
\end{array}\right]+\lambda_{4}\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right] \\
x_{1}=\lambda_{2}=0 \\
x_{2}=\lambda_{3}=0
\end{gathered}
$$

$$
\begin{gathered}
x_{3}=3 \lambda_{1} \\
x_{4}=\lambda_{1}+\lambda_{4}
\end{gathered}
$$

Thus we can see that $3 \lambda_{1} \in \mathbb{Z}$ and therefore $\lambda_{1}=1 / 3$ or $2 / 3$ and again both give the same result for our coefficients, $h_{1}=2$. This gives us our series as:

$$
\begin{gathered}
\frac{1+2 z}{(1-z)^{4}} \\
T_{3}: \lambda_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
0 \\
0 \\
3 \\
1
\end{array}\right]+\lambda_{4}\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right] \\
x_{1}=\lambda_{2}+\lambda_{3}+2 \lambda_{4} \\
x_{2}=\lambda_{3}+\lambda_{4} \\
x_{3}=3 \lambda_{1} \\
x_{4}=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}
\end{gathered}
$$

as pervious we see that $\lambda_{1}=1 / 3$ or $2 / 3$ and

$$
\begin{gathered}
x_{1}-x_{2}=\lambda_{2}+\lambda_{4} \\
x_{1}=\lambda_{2}+\lambda_{3}+2 \lambda_{4} \\
x_{4}-x_{1}+x_{2}=\lambda_{1}+\lambda_{3} \in \mathbb{Z} \Longrightarrow \lambda_{3}=1 / 3 \text { or } 2 / 3
\end{gathered}
$$

And therefore $h_{1}=0$ and $h_{2}=2$, thus giving out series for this triangulation as:

$$
\frac{1+2 z^{2}}{(1-z)^{4}}
$$

For this triangulation, we have the shared facets as $\left\{v_{2}, v_{3}, v_{5}\right\}$ and $\left\{v_{2}, v_{3}, v_{4}\right\}$. In the same manner we solve for the Ehrhart series for each of these facets in \mathbb{R}^{2} embedded in \mathbb{R}^{3} and find that each one is:

$$
\frac{1}{(1-z)^{4}}
$$

Thus the whole Ehrhart series is:

$$
\begin{gathered}
\frac{\left(1+2 z+z^{2}\right)+(1+2 z)+\left(1+2 z^{2}\right)}{(1-z)^{4}}-2 \frac{1}{(1-z)^{4}} \\
=\frac{1+6 z+3 z^{2}}{(1-z)^{4}}
\end{gathered}
$$

To solve for the Ehrhart polynomial, we recall that

$$
\frac{1+6 z+3 z^{2}}{(1-z)^{4}}=\sum_{t \geq 0} L_{p}(t) z^{t}
$$

$$
\begin{gathered}
=\left(1+6 z+3 z^{2}\right) \sum_{t=0}^{\infty}\binom{t+3}{t} z^{t} \\
=\sum_{0}^{\infty}\binom{t+3}{t} z^{t}+\sum_{t=1}^{\infty} 6\binom{t+2}{t-1} z^{t}+\sum_{t=2}^{\infty} 3\binom{t+1}{t-1} z^{t} \\
\text { thus } L_{p}(t)=\binom{t+1}{t}+6\binom{t+2}{t}+3\binom{t+3}{t}
\end{gathered}
$$

