
Proof. We define v1 = (0, 0, 0), v2 = (0, 0, 3), v3 = (1, 0, 0), v4 = (1, 1, 0), v5 = (2, 1, 0), and v6 = (2, 0, 1).
We take the following triangulations of the polytope, P as T1 = (v3, v6, v2, v5), T2 = (v2, v4, v3, v1), T3 =

(v2, v3, v4, v5). We now take the cones of each of our triangulations to obtain their Ehrhart series.
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The coordinates in the fundamental parallelepiped, Π for T1 are as follows:

x2 = λ4 = 0

x1 = λ1 + 2λ2

x3 = λ2 + 3λ3

x4 = λ1 + λ2 + λ3

Since we know that all our xi ∈ Z+ we can now arrange our equations to obtain our factors for λi and thus

our coefficients for our Erhart series.

λ1 = x4 − λ2 − λ3

x1 = x4 − λ2 − λ3 + 2λ2

x1 − x4 = λ2 − λ3

x3 = λ2 + 3λ3

−(x1 − x4) + x3 = 3λ3 which is in Z and thus let

4λ3 = n

λ3 = n/4 < 1 therefore n = 1, 2, 3

plugging these back into our original equations we get,

for n = 1 λ3 = 1/4 =⇒ λ2 = 1/4 =⇒ λ1 = 1/2

for n = 2 λ3 = 2/4 = 1/2 =⇒ λ2 = 1/2 =⇒ λ1 = 0

for n = 3 λ3 = 3/4 =⇒ λ2 = 3/4 =⇒ λ1 = 1/2

And plugging these back into our original equations for our Π vertices yields that h1 = 2, and h2 = 1, thus

giving our Ehrhart series for this triangulation as:

1 + 2z + z2

(1− z)4

For T2 and T3 we proceed in the same way:

T2 : λ1
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x1 = λ2 = 0

x2 = λ3 = 0
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x3 = 3λ1

x4 = λ1 + λ4

Thus we can see that 3λ1 ∈ Z and therefore λ1 = 1/3 or 2/3 and again both give the same result for our

coefficients, h1 = 2. This gives us our series as:

1 + 2z

(1− z)4

T3 : λ1
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x1 = λ2 + λ3 + 2λ4

x2 = λ3 + λ4

x3 = 3λ1

x4 = λ1 + λ2 + λ3 + λ4

as pervious we see that λ1 = 1/3 or 2/3 and

x1 − x2 = λ2 + λ4

x1 = λ2 + λ3 + 2λ4

x4 − x1 + x2 = λ1 + λ3 ∈ Z =⇒ λ3 = 1/3 or 2/3

And therefore h1 = 0 and h2 = 2, thus giving out series for this triangulation as:

1 + 2z2

(1− z)4

For this triangulation, we have the shared facets as {v2, v3, v5} and {v2, v3, v4}. In the same manner we solve

for the Ehrhart series for each of these facets in R2
embedded in R3

and find that each one is:

1

(1− z)4

.

Thus the whole Ehrhart series is:

(1 + 2z + z2) + (1 + 2z) + (1 + 2z2)

(1− z)4
− 2

1

(1− z)4

=
1 + 6z + 3z2

(1− z)4

To solve for the Ehrhart polynomial, we recall that

1 + 6z + 3z2

(1− z)4
=

�
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t
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= (1 + 6z + 3z2)
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Problem 6. (The staircase triangulation of ∆m−1 ×∆n−1). Let ei and fj be the standard unit vectors in Rm

and Rn, respectively, and let vij = ei × fj ∈ Rm+n. Let

∆m−1 ×∆n−1 = conv{vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Now consider the rectangular grid with corners (1, 1) to (m,n). A staircase is a path from (1, 1) to (m,n)
that only steps north or east along edges of the grid. For such a staircase S define a polytope

PS = conv{vij : (i, j) is a vertex of S}.

Prove that, as S ranges over all {m + n − 2m − 1} staircases, the polytopes PS form a triangulation of
∆m−1 ×∆n−1.

Proof. Notice that this is the generalization of our proof from problem 1. If we look at the lattice grid formed

with (1, 1) and (m,n) as our corners then by definition every point on our grid is linearly independent as we

move north and east since for each vij to vkl k > i and l > j. Thus our points from our staircase grid form

a linearly independent set of points and have m+ n vertices and is thus a simplex. Taking the set of points

and defining the polytope Ps = conv{vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} thus gives a triangulation of P .

If we take the entire grid and construct the staircase/path from (1, 1) to (1,m) and then to (n,m). We know

we have a triangulation as stated above, we can then subtract the point (1,m) and construct the closest

path possible without the lost point thereby creating a new staircase. There are
�n+m−2

n−1

�
number of paths

since we are starting at the point (1, 1) and at each step we have a choice of 2 paths to take, namely up or

right for all point in the m× n grid except at the end point. So if we were starting at (0, 0) we would have

�
n+m

m

�

assuming that m is larger. However since we begin the grid at (1, 1) our binomial is

�
(n− 1) + (m− 1)

m− 1

�

=

�
n+m− 2

m− 1

�

Problem 7. In at most half a page, tell me your thoughts about the project. What topics are you considering?
Are you interested in trying to solve an open problem / surveying the current state of a topic / understanding
an interesting result / writing some useful software? Do you already have a partner? Are you interested in
a partner in Bogotá / San Francisco?
(The only wrong answer is ”I don’t know.”)
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