Proof: = Let g(z) be a polynomial of degree < d and g(1) # 0.
Let g(z) = apz" + ...a12 + ap and ap + an—1 + ...a1 + ap # 0. Then % =
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Now we can switch the summation which gives us
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Hence each is a polynomial of degree d.
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For some coefficients by, where 0 < k < d— 1. Since g(1) = a9+ a1+ ...+ a, > 0 we are
assure the coefficient of t? is not equal to 0 hence the degree of f is d.



< Let f(t) be a polynomial of degree d.
Let f(t) = bgt? + ...bit + by. Then we have
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From Problem 2 we proved that
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We then have
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Using this we have
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Denote gi(z) = A(k,1)2! + ... A(k, k)2*, hence gi(z) is a polynomal of degree k and

therefore we have
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Since we want to add all these together we need a common denominator. Hence
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Thus our numerator is g(z) = EZ:O brgr(2)(1 — 2)?%. This polynomial’s degree is at
most d and
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Therefore
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