Proof: \Rightarrow Let $g(z)$ be a polynomial of degree $\leq d$ and $g(1) \neq 0$.
Let $g(z)=a_{n} z^{n}+\ldots a_{1} z+a_{0}$ and $a_{n}+a_{n-1}+\ldots a_{1}+a_{0} \neq 0$. Then $\frac{g(z)}{(1-z)^{d+1}}=$ $g(z) \sum_{n \geq 0}\binom{t+d}{t} z^{t}$

$$
\begin{aligned}
& \frac{g(z)}{(1-z)^{d+1}}=\sum_{i=0}^{n} \sum_{t \geq 0} a_{i}\binom{t+d}{t} z^{t+i} \\
& \frac{g(z)}{(1-z)^{d+1}}=\sum_{i=0}^{n} \sum_{t \geq i} a_{i}\binom{t-i+d}{t-i} z^{t}
\end{aligned}
$$

By convention $\binom{t-i+d}{t-i}=0$ when $t<i$, hence we have

$$
\frac{g(z)}{(1-z)^{d+1}}=\sum_{i=0}^{n}\left[\sum_{t \geq 0} a_{i}\binom{t-i+d}{t-i} z^{t}\right]
$$

Now we can switch the summation which gives us

$$
\frac{g(z)}{(1-z)^{d+1}}=\sum_{t \geq 0}\left[\sum_{i=0}^{n} a_{i}\binom{t-i+d}{t-i}\right] z^{t}
$$

For any $1 \leq i \leq n$ we have $\binom{t-i+d}{t-i}=\frac{(t-i+d)!}{(t-i)!d!}=\frac{(t-i+d)(t-i+d-1) \ldots(t-i+1)}{d!}=\frac{\prod_{k=0}^{d-1}(t-i+d-k)}{d!}$. Hence each is a polynomial of degree d.

$$
f(t)=\sum_{i=0}^{n} a_{i}\binom{t-i+d}{t-i}=\frac{a_{0}+a_{1}+\ldots+a_{n}}{d!} t^{d}+b_{d-1}+\ldots b_{1} t+b_{0}
$$

For some coefficients b_{k} where $0 \leq k \leq d-1$. Since $g(1)=a_{0}+a_{1}+\ldots+a_{n} \geq 0$ we are assure the coefficient of t^{d} is not equal to 0 hence the degree of f is d.
\Leftarrow Let $f(t)$ be a polynomial of degree d.
Let $f(t)=b_{d} t^{d}+\ldots b_{1} t+b_{0}$. Then we have

$$
\sum_{t \geq 0} f(t) z^{t}=\sum_{t \geq 0} b_{d} t^{d} z^{t}+\sum_{t \geq 0} b_{d-1} t^{d-1} z^{t}+\ldots+\sum_{t \geq 0} b_{1} t z^{t}+\sum_{t \geq 0} b_{0} z^{t}
$$

From Problem 2 we proved that

$$
\begin{gathered}
\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, 1) z^{0}+\cdots+A(d, d) z^{d-1}}{(1-z)^{d+1}} \\
z \sum_{t \geq 0}(t+1)^{d} z^{t}=\sum_{t \geq 0}(t+1)^{d} z^{t+1}=\frac{A(d, 1) z^{1}+\cdots+A(d, d) z^{d}}{(1-z)^{d+1}}
\end{gathered}
$$

We then have

$$
\sum_{t \geq 1}(t)^{d} z^{t}=\sum_{t \geq 0}(t)^{d} z^{t}=\frac{A(d, 1) z^{1}+\cdots+A(d, d) z^{d}}{(1-z)^{d+1}}
$$

Using this we have

$$
\begin{gathered}
\sum_{t \geq 0} f(t) z^{t}=b_{d} \frac{A(d, 1) z^{1}+\cdots+A(d, d) z^{d}}{(1-z)^{d+1}}+b_{d-1} \frac{A(d-1,1) z^{1}+\cdots+A(d-1, d-1) z^{d-1}}{(1-z)^{d}} \\
+\ldots+b_{1} \frac{A(1,1) z^{1}}{(1-z)^{2}}+b_{0} \frac{1}{(1-z)^{1}}
\end{gathered}
$$

Denote $g_{k}(z)=A(k, 1) z^{1}+\ldots A(k, k) z^{k}$, hence $g_{k}(z)$ is a polynomal of degree k and therefore we have

$$
\sum_{t \geq 0} f(t) z^{t}=\sum_{k=0}^{d} b_{k} \frac{g_{k}(z)}{(1-z)^{k+1}}
$$

Since we want to add all these together we need a common denominator. Hence

$$
\sum_{t \geq 0} f(t) z^{t}=\sum_{k=0}^{d} b_{k} \frac{g_{k}(z)(1-z)^{d-k}}{(1-z)^{d+1}}
$$

Thus our numerator is $g(z)=\sum_{k=0}^{d} b_{k} g_{k}(z)(1-z)^{d-k}$. This polynomial's degree is at most d and

$$
g(z)=\sum_{k=0}^{d} b_{k} g_{k}(z)(1-z)^{d-k}+g_{k}(z)(1-z)^{0}=\sum_{k=0}^{d-1} b_{k} g_{k}(z)(1-z)^{d-k}+g_{d}(z)
$$

Therefore

$$
g(1)=\sum_{k=0}^{d-1} b_{k} g_{k}(1)(1-1)^{d-k}+g_{d}(1)=g_{d}(1)=A(d, 1)+\ldots A(d, d)>0
$$

