
�d−1
k=1A(d− 1, k)(kzk−1 + (d− k)zk)

(1− z)d+1
=

�d
k=1A(d, k)zk−1

(1− z)d+1

thus:

�

t≥0

(t+ 1)dzt =

�d
k=1A(d, k)zk−1

(1− z)d+1

EXC 3

Every permutation of [d] is obtained from a permutation of [d − 1] by
introducing d into one of the d possible positions: at the beginning, at the
end or in any of the d− 2 spaces between the d− 1 elements of the permu-
tation of [d − 1]. Since the permutations obtained in this way are d!, they
are exactly the permutations of [d] (no repetition).

Thus, we can count the number E(d,k) of permutations of [d] with k
descents by analyzing their relation to the permutations of [d− 1]:
Let (n1, n2, ..., nd−1) be a permutations of [d − 1] with t descents then
there are 4 possible types of locations to introduce d: if we insert d at
the beginning, we get (d, n1, n2, ..., nd−1) a permutation of [d] with t + 1
descents if we insert d at the end, we get (n1, n2, ..., nd−1, d) a permu-
tation of [d] with t descents if we insert d in the middle of a descent
(ni, nj), we get (d, n1, n2, ..., ni, d, nj .., nd−1) a permutation of [d] with t
descents (the descent (ni, nj) converted into a non-descent (ni, d) and a
descent (d, nj)) if we insert d in the middle of a non-descent (ni, nj), we
get (d, n1, n2, ..., ni, d, nj .., nd−1) a permutation of [d] with t + 1 descents
(the non-descent (ni, nj) converted into a non descent (ni, d) and a descent
(d, nj))

consequently, the permutations of [d] with k − 1 descends, are obtained
by: introducing d into one of the E(d − 1, k − 1) permutations of [d − 1]
with k− 2 descends in such a way that it rises the number of descents or by
introducing d into one of the E(d− 1, k) permutations of [d− 1] with k − 1
descends in such a way that it conserves the number of descents.

There are n−k+1 ways of rising the number of descends of a permutation
of [d−1] with k−2 descends (introducing d at the beginning or in the middle
of one of the (n− 2)− (k− 2) non-descents) There are k ways of conserving
the number of descents of a permutation of [d − 1] with k − 1 descends
(introducing d at the end or in the middle of one of the k − 1 descents.
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since the number of descends either rises or stays the same when obtai-
ning a permutation of [d] from a permutation of [d − 1] by introducing d,
these are the only ways of obtaining a permutation of [d] with k−1 descends.

Thus, E(d, k) = (n− k + 1)E(d− 1, k − 1) + kE(d− 1, k)
Since E(1, 1) = 1 = A(11) and since E(d, k) and A(d, k) are defined by

the same recursion, we have E(d, k) = A(d, k) for all integers 1 ≤ k ≤ d.
(this can be proofed easily by induction on d, the base case is done, and
E(d, k), A(d, k) only depend on d,k and the previous cases with a smaller d)

To see A(d, k) = A(d, d + 1 − k) for all integers 1 ≤ k ≤ d, just notice
that A(d, d+1− k) represents the number of permutations of [d] with d− k
descents. Since there is either a descent or an ascend between to numbers of a
permutation, the permutations with d−k descents are exactly those withk−1
ascends. Since there is a bijection (”taking it in reversed order”) between
the permutations with t ascends and the permutations with t descends, the
number of the permutations with k − 1 ascends is exactly the number of
permutations with k − 1 descends, that is A(d, k).

EXC 4

Let f : → be a function and d ∈ . Write

�

t≥0

f(t)zt =
g(z)

(1− z)d+1

TFAE:

f is a polynomial of degree d

g is a polynomial of degree at most d such that g(1) �= 0.

First suppose f(x) = adxd + ad−1xd−1 + · · ·+ a1x+ a0 with ad �= 0

recall that

�

t≥0

(t+ 1)dzt =
A(d, 1)z0 + · · ·+A(d, d)zd−1

(1− z)d+1

that is
�

t≥0

tdzt =
A(d, 1)z1 + · · ·+A(d, d)zd

(1− z)d+1
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