EXC 3

Every permutation of $[d]$ is obtained from a permutation of $[d-1]$ by introducing d into one of the d possible positions: at the beginning, at the end or in any of the $d-2$ spaces between the $d-1$ elements of the permutation of $[d-1]$. Since the permutations obtained in this way are d !, they are exactly the permutations of $[d]$ (no repetition).

Thus, we can count the number $\mathrm{E}(\mathrm{d}, \mathrm{k})$ of permutations of $[d]$ with k descents by analyzing their relation to the permutations of $[d-1]$:
Let $\left(n_{1}, n_{2}, \ldots, n_{d-1}\right)$ be a permutations of $[d-1]$ with t descents then there are 4 possible types of locations to introduce d: if we insert d at the beginning, we get $\left(d, n_{1}, n_{2}, \ldots, n_{d-1}\right)$ a permutation of $[d]$ with $t+1$ descents if we insert d at the end, we get $\left(n_{1}, n_{2}, \ldots, n_{d-1}, d\right)$ a permutation of [d] with t descents if we insert d in the middle of a descent $\left(n_{i}, n_{j}\right)$, we get $\left(d, n_{1}, n_{2}, \ldots, n_{i}, d, n_{j} ., n_{d-1}\right)$ a permutation of $[d]$ with t descents (the descent $\left(n_{i}, n_{j}\right)$ converted into a non-descent $\left(n_{i}, d\right)$ and a descent $\left.\left(d, n_{j}\right)\right)$ if we insert d in the middle of a non-descent $\left(n_{i}, n_{j}\right)$, we get $\left(d, n_{1}, n_{2}, \ldots, n_{i}, d, n_{j} ., n_{d-1}\right)$ a permutation of $[d]$ with $t+1$ descents (the non-descent $\left(n_{i}, n_{j}\right)$ converted into a non descent $\left(n_{i}, d\right)$ and a descent $\left.\left(d, n_{j}\right)\right)$
consequently, the permutations of $[d]$ with $k-1$ descends, are obtained by: introducing d into one of the $E(d-1, k-1)$ permutations of [$d-1$] with $k-2$ descends in such a way that it rises the number of descents or by introducing d into one of the $E(d-1, k)$ permutations of $[d-1]$ with $k-1$ descends in such a way that it conserves the number of descents.

There are $n-k+1$ ways of rising the number of descends of a permutation of [d-1] with $k-2$ descends (introducing d at the beginning or in the middle of one of the $(n-2)-(k-2)$ non-descents) There are k ways of conserving the number of descents of a permutation of $[d-1]$ with $k-1$ descends (introducing d at the end or in the middle of one of the $k-1$ descents.
since the number of descends either rises or stays the same when obtaining a permutation of $[d]$ from a permutation of $[d-1]$ by introducing d , these are the only ways of obtaining a permutation of $[d]$ with $k-1$ descends.

Thus, $E(d, k)=(n-k+1) E(d-1, k-1)+k E(d-1, k)$
Since $E(1,1)=1=A(11)$ and since $E(d, k)$ and $A(d, k)$ are defined by the same recursion, we have $E(d, k)=A(d, k)$ for all integers $1 \leq k \leq d$. (this can be proofed easily by induction on d , the base case is done, and $E(d, k), A(d, k)$ only depend on d, k and the previous cases with a smaller d)

To see $A(d, k)=A(d, d+1-k)$ for all integers $1 \leq k \leq d$, just notice that $A(d, d+1-k)$ represents the number of permutations of $[d]$ with $d-k$ descents. Since there is either a descent or an ascend between to numbers of a permutation, the permutations with $d-k$ descents are exactly those with $k-1$ ascends. Since there is a bijection ("taking it in reversed order") between the permutations with t ascends and the permutations with t descends, the number of the permutations with $k-1$ ascends is exactly the number of permutations with $k-1$ descends, that is $A(d, k)$.

