2. Show that,

$$
\sum_{t \geq 0}^{\infty}(t+1)^{d} z^{t}=\frac{A(d, 1) z^{0}+A(d, 2) z^{1}+\cdots A(d, d) z^{d-1}}{(1-z)^{d+1}}
$$

where $A(d, k)=(d-k+1) A(d-1, k-1)+k A(d-1, k)$ and $A(d, k)=0$ if $k \leq 0$ or $k \geq d+1$ for all $1 \leq k \leq d$

Proof. When $\mathrm{d}=0$ we get that $\sum_{t \geq 0}^{\infty} z^{t}=\frac{1}{(1-z)}$. When $\mathrm{d}=1$ we have that

$$
\sum_{t \geq 0}^{\infty}(t+1)^{1} z^{t}=\sum_{t \geq 0}^{\infty} \frac{d}{d z} z^{t+1}=\frac{d}{d z} \sum_{t \geq 0}^{\infty} z^{t+1}=\frac{d}{d z}\left(\frac{1}{1-z}-1\right)=\frac{1}{(1-z)^{2}}
$$

notice that $A(2,1) z^{0}=(2 A(1,0)+A(1,1)) z^{0}=(0+A(1,1)) z^{0}=1 z^{0}=1$ which satisfiies the equality above. We shall proceed by induction and assume true for the d-1 case and now we need to show that equality holds for d .

$$
\sum_{t \geq 0}^{\infty}(t+1)^{d} z^{t}=\sum_{t \geq 0}^{\infty}(t+1)^{d-1} \frac{d}{d z} z^{t+1}=\frac{d}{d z} \sum_{t \geq 0}^{\infty}(t+1)^{d-1} z^{t+1}
$$

$$
\frac{d}{d z}\left(z\left(\sum_{t \geq 0}^{\infty}(t+1)^{d-1} z^{t}\right)\right)
$$

by our induction hypothosis we get,

$$
\frac{d}{d z}\left(\frac{A(d-1,1) z^{1}+A(d-1,2) z^{2}+\cdots A(d-1, d-1) z^{d}}{(1-z)^{d+1}}\right)=\frac{d}{d z}\left(\frac{A(d-1,1) z^{1}}{(1-z)^{d+1}}+\frac{A(d-1,2) z^{2}}{(1-z)^{d+1}}+\cdots+\frac{A(d-1, d-1)}{(1-z)^{d+1}}\right.
$$

where the derivative of each term is of the form,

$$
\frac{d}{d z}\left(\frac{A(d-1, i) z^{i}}{(1-z)^{d+1}}\right)=\frac{i A(d-1, i) z^{i-1}+(d-i) A(d-1, i) z^{i}}{(1-z)^{d}}
$$

for $1 \leq i \leq d-1$. so the sum is of the form

$$
\frac{A(d-1, i) z^{0}+\sum_{i=2}^{d-2}(A(d-1, i-1)+(d-i) A(d-1, i)) z^{i-1}+((d-1) A(d-1, d-1)) z^{d-1}}{(1-z)^{d}}
$$

Notice that for $l=k-1$ we have that the coefficient of each z^{l} for $1 \leq k \leq d$ is exactly of the form

$$
A(d, k) z^{k-1}=(d-k+1) A(d-1, k-1)+k A(d-1, k)
$$

note that when $k=1, l=0$ we have $A(d, 1)=d A(d-1,0)+A(d-1,1)=0+A(d-1,1)$ and for $k=d, l=d-1$ we have $A(d, d)=A(d-1, d-1)+d A(d-1, d)=A(d-1, d-1)+0$. There we have the exact equality for d and so we are done. For this problem I worked with Ashley.

