2. Show that,
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where A(d,k) = (d — k+1)A(d — 1,k — 1) + kA(d — 1,k) and A(d,k) = 0if k <0 or k > d+1 for all
1<k<d

Proof. When d=0 we get that Zgo 2t = (1;). When d=1 we have that
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notice that A(2,1)2" = (2A(1,0) + A(1,1))2° = (0+ A(1,1))2° = 12Y = 1 which satisfiies the equality above.
We shall proceed by induction and assume true for the d-1 case and now we need to show that equality holds
for d.
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by our induction hypothosis we get,
d (A(d=1,1)2" + A(d—1,2)2> +---Ad —1,d = 1)z*\ _ d (A(d-1,1)z!  A(d-1,2)7* A(d—1,d—1)
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where the derivative of each term is of the form,
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for 1 <i<d—1. so the sum is of the form
A(d —1,9)2° + Z?:_;(A(d — 1,0 — 1)+ (d—i)A(d —1,i))2" " + ((d — 1)A(d — 1,d — 1))z~ !
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Notice that for [ = k — 1 we have that the coefficient of each z! for 1 < k < d is exactly of the form
A(d, k)X = (d—k+1)A(d — 1,k — 1) + kA(d — 1,k)

note that when k = 1,1 = 0 we have A(d, 1) = dA(d—1,0)+A(d—1,1) = 0+A(d—1,1) and for k = d,l = d—1
we have A(d,d) = A(d—1,d—1)+dA(d—1,d) = A(d—1,d— 1)+ 0. There we have the exact equality for
d and so we are done. For this problem I worked with Ashley. O




