
HOMEWORK 4

TIA BAKER

1. We have that P = �n−1 × �1 is a n dimension polytope which is constructed by taking two copies
of �n−1 and connecting corresponding veticies together with a copy of �1. Let’s examine the case for
n = 3. Let �2 = conv{v1, v2, v3} such that v1, v2,v3 ∈ V ert(�2) and �2∗ = conv{w1, w2, w3} such that
w1, w2,w3 ∈ V ert(�2∗) so each vi is connected to wi by a copy of �1. Two form a 3 dimensional simplex we
need to choose 4 points of our polytope P such that three points are co-planer. By inspection we see that the

simplex choices of the form vivkwkwl where each index has to be represented and we are choosing 4
2

number

of vertices from each 2 copy of �2 this forces the remaining simplices to be viwiwkwl and wlvivkvl. Every
index for this combiation needs to be represented or all points woul lie on the same hyperplane and since we
need four points we know that one index is going to be represented twice and this forces the hyperplane that
contains 3 points to contain the points that correspond to this index as well. Once we choose that index
value k not equal to i for one of the �2 in P then we can’t choose the same index k in the other copy because
this would force all of the points to lie on the same hyperplane that contain vi and wi and wk therefore that

last coordinate must be vl. We can look at this as there being
�

3
4
2

�
=

�
3
2

�
= 3 ways to pick two points

from �2 which leaves 3− 4
2 = 1 remaining indices that have to be selected from �2∗ once we have choosen

3 vertieces, 2 from �2 and one fom �2∗ this leaves us with 3− 1 number of vertices remaining in �2∗ that
we can choose for our 4th point. So in total we have 3× 2 = 6 number triangulations.

In general, for P = �n−1 ×�1 we have that simplex selection which takes �n+1
2 � sets of vertices from �n−1

and
�
n− �n+1

2 �
�

sets of vertices in �2∗ such that each of the n indices are represented and any single vertex
in the remaining �n+1

2 � vertices of �2∗ will force a triangulation for P. Hence there are in total
�

n
n+1
2

�
× �n+ 1

2
�

number of trianglulations in total for P = �n−1 ×�1 . For this problem I worked with Nick.

2. Show that,
∞�

t≥0

(t+ 1)dzt =
A(d, 1)z0 +A(d, 2)z1 + · · ·A(d, d)zd−1

(1− z)d+1

where A(d, k) = (d − k + 1)A(d − 1, k − 1) + kA(d − 1, k) and A(d, k) = 0 if k ≤ 0 or k ≥ d + 1 for all
1 ≤ k ≤ d

Proof. When d=0 we get that
�∞

t≥0 z
t = 1

(1−z) . When d=1 we have that
∞�

t≥0

(t+ 1)1zt =
∞�

t≥0

d

dz
zt+1 =

d

dz

∞�

t≥0

zt+1 =
d

dz
(

1

1− z
− 1) =

1

(1− z)2

notice that A(2, 1)z0 = (2A(1, 0)+A(1, 1))z0 = (0+A(1, 1))z0 = 1z0 = 1 which satisfiies the equality above.
We shall proceed by induction and assume true for the d-1 case and now we need to show that equality holds
for d.

∞�

t≥0

(t+ 1)dzt =
∞�

t≥0

(t+ 1)d−1 d

dz
zt+1 =

d

dz

∞�

t≥0

(t+ 1)d−1zt+1

1
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d

dz



z




∞�

t≥0

(t+ 1)d−1zt









by our induction hypothosis we get,

d

dz

�
A(d− 1, 1)z1 +A(d− 1, 2)z2 + · · ·A(d− 1, d− 1)zd

(1− z)d+1

�
=

d

dz

�
A(d− 1, 1)z1

(1− z)d+1
+

A(d− 1, 2)z2

(1− z)d+1
+ · · ·+ A(d− 1, d− 1)zd

(1− z)d+1

�

where the derivative of each term is of the form,

d

dz

�
A(d− 1, i)zi

(1− z)d+1

�
=

iA(d− 1, i)zi−1 + (d− i)A(d− 1, i)zi

(1− z)d

for 1 ≤ i ≤ d− 1. so the sum is of the form

A(d− 1, i)z0 +
�d−2

i=2 (A(d− 1, i− 1) + (d− i)A(d− 1, i))zi−1 + ((d− 1)A(d− 1, d− 1))zd−1

(1− z)d

Notice that for l = k − 1 we have that the coefficient of each zl for 1 ≤ k ≤ d is exactly of the form

A(d, k)zk−1 = (d− k + 1)A(d− 1, k − 1) + kA(d− 1, k)

note that when k = 1, l = 0 we have A(d, 1) = dA(d−1, 0)+A(d−1, 1) = 0+A(d−1, 1) and for k = d, l = d−1
we have A(d, d) = A(d− 1, d− 1) + dA(d− 1, d) = A(d− 1, d− 1) + 0 . There we have the exact equality for
d and so we are done. For this problem I worked with Ashley. �

3. Let E(d, k) be the number of permutations of [d] having exactly k − 1 descents. Prove that, for all
1 ≤ k ≤ d,

E(d, k) = (d− k + 1)E(d− 1, k − 1) + kE(d− 1, k)

conclude that E(d, k) = A(d, k) for all integers 1 ≤ k ≤ d.

Proof. We will denote a d−permutation by p = p1p2 · · · pdwith pi being the ith entry in the linear order given
by p. There are two ways we can get an d−permutation p with k− 1 descents from an (d− 1)- permutation
p

�
by inserting the entry d into p

�
. Either p

�
has k − 1 descents, and the insertion of d does not form a new

descent, or p
�
has k − 2 descents, and the insertion of d does form a new descent.

In the first case, we have to put the entry d at the end of p
�
, or we have to insert d between two entries that

form one of the d− k descents of p
�
. This means we have d− k + 1 choices for the position of d. As we have

E(d− 1, k − 1) choices for p
�
,the first term of the right-hand side is explained.

In the second case we have to put the entry d at the front of p
�
, or we have to inset d between two entries

that form one the (d − 1) − (d − k) ascents of p
�
. This means that we have k choices for the position of d.

As we have E(d − 1, k) choices for p
�
, the second part of the right-hand side is explained, and the equality

is proved.

Note that E(d, k) = E(d, d+1−k) since if p = p1p2 · · · pd has k− 1 descents then its reverse p∗ = p∗1p
∗
2 · · · p∗d

has d− k + 1 descents. �

4. Let f : N → R be a function and d ∈ N. Write
�

t≥0

f(t)zt =
g(z)

(1− z)d+1

Prove that the following are equivalent:

* f is a polynomial of degree d

* g is a polynomial of degree at most d such that g(1) �= 0.


