Problem 5 (I worked in this problem with Federico Castillo and Diego Cifuentes):
Let $m_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), m_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right), \ldots, m_{n}=\left(a_{n 1}, a_{n 2}, \ldots, a_{n n}\right)$ be the vectors of preferences of the males,i.e, $a_{i j}$ represents the amount of money that the male $i$ is willing to pay (or must we pay) to date with the female $j$. Similarly, define $f_{1}=\left(b_{11}, b_{12}, \ldots, b_{1 n}\right), f_{2}=$ $\left(b_{21}, b_{22}, \ldots, b_{2 n}\right), \ldots, f_{n}=\left(b_{n 1}, b_{n 2}, \ldots, b_{n n}\right)$ the vectors of preferences of the females, i.e, $b_{i j}$ represents the amount of money that the female $i$ is willing to pay (or must we pay) to date with the male $j$. Using the previos notation, and knowing that we must arrange $n$ disjoint dates with the objetive of maximize profit, what we are looking for is: $\max _{\sigma \in S_{n}} \sum_{i=1}^{n} a_{i \sigma(i)}+b_{\sigma(i) i}$. Let $c \in \mathbb{R}^{n^{2}}$, $c=\left(a_{11}+b_{11}, a_{12}+b_{21}, \ldots, a_{1 n}+b_{n 1}, a_{21}+b_{12}, a_{22}+b_{22}, \ldots, a_{2 n}+b_{n 2}, \ldots, a_{n 1}+b_{1 n}, a_{n 2}+b_{2 n}, \ldots, a_{n n}+b_{n n}\right)$, (i.e., $(c)_{n(i-1)+j}=a_{i j}+b_{j i}$ for all $i, j \in\{1,2, \ldots, n\}$ ). Now for each $\sigma \in S_{n}$ let $v_{\sigma} \in \mathbb{R}^{n^{2}}$ be defined as follows: $\left(v_{\sigma}\right)_{n(i-1)+j}=1$ if $\sigma(i)=j$ and $\left(v_{\sigma}\right)_{n(i-1)+j}=0$ otherwise, that is, in the first $n$ entries I set 1 in the $\sigma(1)$ position and 0 in the rest, in the second $n$ entries I set 1 in the $\sigma(2)$ position and 0 in the rest, $\ldots$, in the last $n$ entries I set 1 in the $\sigma(n)$ position and 0 in the rest. Using the previous notation the problem can be written as $\max _{\left\{v_{\sigma}: \sigma \in S_{n}\right\}} c^{t} v_{\sigma}$. Defining the polytope $P=$ convex $\left\{v_{\sigma}: \sigma \in S_{n}\right\}(V$-description $)$ and knowing that the max of a linear functional in a polytope always is attained at least in a vertex, the original problem is equivalent to $\max _{\{x \in P\}} c^{t} x$.

Now lets find the $H$ - description of $P$. To simplify the situation, lets consider the vectors $x \in \mathbb{R}^{n^{2}}$ as $n \times n$ real matrices, where the first $n$ coordinates of $x$ are represented at the first row of the matrix, the second $n$ coordinates are in the second row of the matrix, and so on. Using this represesentation we can observe that the vertices of $P$ are the permutation matrices. Now I am going to prove that $P$ (i.e the convex hull of the permutation matrices ) is the set of doubly stochastic matrices. The set of doubly stochastic matrices can be viewed as the polytope in the space of $n \times n$ matrices given by the restrictions:
i) The entries of $M$ must be nonnegative.
ii) The sum of the eantries at each row is 1 .
iii) The sum of the eantries at each colum is 1 .

The permutation matrices are vertices of this polytope, since if we regard them as vectors again, each of them is the only maximun of the linear functional associated to a vector that is equal to themselves (for instance, (010100001) is a vertex since it is the only maximun asociated with the functional given by $c=(010100001)$ ).

Now lets check that this polytope can not have more vertices:
Let $M$ be a doubly stochastic matrix different to any permutation. Then we can find an entry $m_{1}$ of $M$ such that $m_{1} \in(0,1)$. Let $m_{2}$ be an entry in the same row of $m_{1}$ such that $m_{2} \in(0,1)$. Let $m_{3}$ be an entry in the same column of $m_{2}$ such that $m_{3} \in(0,1)$. We can continue in this way, going through rows and columns in consecutive steps, and taking entries with values in $(0,1)$. Since there are finitely many entries we must repeat entries in this proccess, asume WLOG that $m_{1}$ is the first entry we repeat in the procces, and we return to it at step $n$, i.e, $m_{n}=m_{1}$. Define $\epsilon=\min \left\{m_{i}, 1-m_{i}: i=1, \ldots, n\right\}$, so $0 \leq m_{i}-\epsilon<m_{i}<m_{i}+\epsilon \leq 1$ for $i=1,2, \ldots, n$. We must consider two cases according to the value of $n$ :

* If $n$ is odd ,define $M^{+}$from $M$ by changing the entries $m_{1}, m_{2}, \ldots, m_{n-1}$ to $m_{1}=m_{1}+\epsilon$, $m_{2}=m_{2}-\epsilon, m_{3}=m_{3}+\epsilon, \ldots, m_{n-1}=m_{n-1}-\epsilon$, and the other entries of $M$ remain equal. Observe that $M^{+}$is doubly stochastic since all the entries are nonnegative (by the election of $\epsilon$ ) and the sum in rows and columns is not changed. Now define $M^{-}$from $M$ by changing the entries $m_{1}, m_{2}, \ldots, m_{n-1}$ to $m_{1}=m_{1}-\epsilon, m_{2}=m_{2}+\epsilon, m_{3}=m_{3}-\epsilon, \ldots, m_{n-1}=m_{n-1}-\epsilon$ and the other entries remain equal, so $M^{-}$is doubly stochastic. Since $M=\frac{1}{2} M^{+}+\frac{1}{2} M^{-}$we conclude that $M$ is not a vertex of the polytope of doubly stochastic matrices.
* If $n$ is even we get an analogous result to the previos one: setting $M^{+}$from $M$ by changing the entries $m_{2}, m_{3}, \ldots, m_{n-1}$ to $m_{2}=m_{2}+\epsilon, m_{3}=m_{3}-\epsilon, \ldots, m_{n-1}=m_{n-1}-\epsilon$ and $M^{-}$from $M$ by changing the entries $m_{2}, \ldots, m_{n-1}$ to $m_{2}=m_{2}-\epsilon, m_{3}=m_{3}+\epsilon, \ldots, m_{n-1}=m_{n-1}+\epsilon$, we get two DS, such that $M=\frac{1}{2} M^{+}+\frac{1}{2} M^{-}$so we conclude that $M$ is not a vertex of the polytope of doubly stochastic matrices.

Therefore if $M$ is any dobly stochastic matrix different to a permutation matrix, it can not be a vertiex of the polytope of doubly stochastic matrices. So we conclude that $\operatorname{conv}\left\{M_{\sigma}: M_{\sigma}\right.$ is a permutation matrix $\}=$ doubly stochastic matrices.

