
i. The edges of the polytope that do not lie in xd+1 = 0 and H join vertices of the

form v and v�

ii. The facets of the new vertices are xd+1, H and facets of P together with their

projections except for F .

Thus P �
has n + 1 facets and is d + 1 dimensional. Note that the diameter of P �

is at

greater or equal than the diameter of P , because in any path between two vertices we

can forget about the distinction between v and v�, and omit their edges, and we obtain

a shorter path between corresponding vertices in P . Thus ∆(d, n) ≤ ∆(d+ 1, n+ 1).

(c) Now note that ∆(d, n) ≤ ∆(d+ k, n+ k) for k ≥ 0 by a direct induction and (b). Now

2d < n so setting k = n − 2d > 0, we get that ∆(d, n) ≤ ∆(n − d, 2(n − d)), and the

Hirsch difference is equal for both. We are done.

5. Enumerate the men and the women from 1 to n. We have n! possible pairing and each pair

induces a distinct permutation π ∈ Sn where π(i) = j if mi and wj are paired. Now Sn has a

canonical representation as a group of matrices in Mn(R) given by aij = δπ(i)j , where δ is the

kronecker function. Denote this matrix by Aπ and let A := {Aπ |π ∈ Sn}. Let P = convA.

This polytope will be the one we use in the linear program. Now let C inMn×n, so that Cij

is the profit of arranging mi and wj . If we view this matrix as a vector in Rn×n
, then C ·Aπ

is the profit made by the arrangement given by the permutation π (here the product is the

usual coordinate to coordinate dot product, not the matrix product). Thus what we want is

to maximize C in P . The set of vertices of P is A, because Aπ is maximized by itself in P .

Thus we have the V representation of P .

It remains to find the H representation of P . We claim that X = (xij) ∈ P if and only if the

following three conditions hold:

i. xij ≥ 0 for i, j ∈ [n]

ii.

n�

j=1

xij = 1 for every i ∈ [n]

iii.

n�

i=1

xij = 1 for every j ∈ [n]

The last two conditions say that the rows and columns add up to 1. That any point in P
satisfies the three conditions is obvious, because the vertices Aπ satisfy them and all of them

are preserved by convex combinations. To prove the other direction we first prove another

result.

Proposition 1: Let X = (xij) ∈ Mn(R) be a matrix that satisfies i., ii. and iii.. Then it is
possible to place n chess rooks on the board in such a way every rook lies in a coordinate with
a positive number and no pair of rooks attack each other.

Proof: Consider a bipartite graph G with left vertices equal to m1, m2, . . . , mn and right

vertices equal to k1, k2, . . . , kn and where an edge is drawn from mi to kj if and only xij > 0.

The condition of the roots is equivalent to say that G has a matching, thus we have to show

that Hall’s condition is satisfied. Let B be set of left vertices of size k and let C be the set of

right vertices that are connected to some element of B. We have to show that |C| ≥ k. Note
that for a vertex mi the sum of the numbers of numbers of the coordinates of the implied
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edges is 1 (it is a complete row). It follows that the sum of the number of coordinates of the

edges in B is k. If C ≤ k− 1 the the sum of the numbers of the edges entering in C is at most

k− 14 (ever column adds up to 1) and this is impossible since the implied edges are the same

as for B and by condition i. Thus |C| ≥ k as desired. �
We proceed to show the the assertion by strong induction on the number of positive entries of

X. For the base case note that there are at least n non-zero entries in the matrix, and if there

are n then the matrix is Aπ for some π. Assume the result is true for all matrices with less

that k positive entries and let X be a matrix that satisfies the three given conditions. By the

proposition we can place n non-attacking rooks on positive entries. Assume that r is the least

entry under a rook. Thus we have that X ≥ rAπ where π is the permutation associated to

the position of the rooks. Also (1− r)−1
(X − rAπ) satisfies the three conditions and has less

positive entries than X (because the entry with an r goes to zero, and no position with a zero

is changed), thus (1−r)−1
(X−rAπ) is in convA. Also X = (1−r)((1−r)−1

(X−rAπ))+rAπ

is a convex combination of elements in A and is therefore a member of A, because A is convex.

6. (a) The simples is 2-neighborly, so it’s diameter is 1. If the dimension is d then it has d+ 1

facets, so the Hirsch conjecture works.

(b) The vertices of the cube may be seen as {0, 1}d. Two vertices of the cube are adjacent if

and only if they differ by exactly one coordinate. Thus the distance between two vertices

is exactly the number of distinct coordinates they have. This difference is at most d,
because there are d coordinates. The vectors (0, 0, . . . , 0) and (1, 1, . . . , 1) differ in all

d positions so it’s distance is d. It follows that the diameter of the cube is d. Now,

the cube has exactly 2d facets corresponding to the hyperplanes given by xi = 0, 1 for

i ∈ [d]. So the Hirsch hypothesis is satisfy since we are in dimension d.

(c) Note that if we remove a vertex ±ei from ♦d we get a pyramid that consists of adding

∓ei to the other points that lie on the hyperplane xi = 0. Thus if we choose to vertices

that are not opposite, their distance is 1, because we delete the vertex that is opposite

to the first we choose and we get a pyramid. Now the distance between ei and −ei is 2
(unless d = 1 that is a trivial case) because we can choose j �= i and go from ei to ej in

one step and from ej to −ei in another step. ei and −ei are not connected by and edge,

because their convex hull contains 0 that is an interior point of ♦d. Thus the diameter of

the polytope is 2. It is easy to see that the the number of faces of ♦d is 2
d
by induction,

thus the Hirsch conjecture is obviously satisfied since 2
d − d ≥ 2 for d ≥ 2. The one

dimensional case holds because it is a simplex.
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