5. Enumerate the men and the women from 1 to n. We have n ! possible pairing and each pair induces a distinct permutation $\pi \in S_{n}$ where $\pi(i)=j$ if m_{i} and w_{j} are paired. Now S_{n} has a canonical representation as a group of matrices in $\mathcal{M}_{n}(\mathbb{R})$ given by $a_{i j}=\delta_{\pi(i) j}$, where δ is the kronecker function. Denote this matrix by A_{π} and let $\mathcal{A}:=\left\{A_{\pi} \mid \pi \in S_{n}\right\}$. Let $P=\operatorname{conv} \mathcal{A}$. This polytope will be the one we use in the linear program. Now let $C \operatorname{in} \mathcal{M}_{n \times n}$, so that $C_{i j}$ is the profit of arranging m_{i} and w_{j}. If we view this matrix as a vector in $R^{n \times n}$, then $C \cdot A_{\pi}$ is the profit made by the arrangement given by the permutation π (here the product is the usual coordinate to coordinate dot product, not the matrix product). Thus what we want is to maximize C in P. The set of vertices of P is \mathcal{A}, because A_{π} is maximized by itself in P. Thus we have the V representation of P.
It remains to find the \mathcal{H} representation of P. We claim that $X=\left(x_{i j}\right) \in P$ if and only if the following three conditions hold:
i. $x_{i j} \geq 0$ for $i, j \in[n]$
ii. $\sum_{j=1}^{n} x_{i j}=1$ for every $i \in[n]$
iii. $\sum_{i=1}^{n} x_{i j}=1$ for every $j \in[n]$

The last two conditions say that the rows and columns add up to 1 . That any point in P satisfies the three conditions is obvious, because the vertices A_{π} satisfy them and all of them are preserved by convex combinations. To prove the other direction we first prove another result.

Proposition 1: Let $X=\left(x_{i j}\right) \in \mathcal{M}_{n}(\mathbb{R})$ be a matrix that satisfies i., ii. and iii.. Then it is possible to place n chess rooks on the board in such a way every rook lies in a coordinate with a positive number and no pair of rooks attack each other.
Proof: Consider a bipartite graph G with left vertices equal to $m_{1}, m_{2}, \ldots, m_{n}$ and right vertices equal to $k_{1}, k_{2}, \ldots, k_{n}$ and where an edge is drawn from m_{i} to k_{j} if and only $x_{i j}>0$. The condition of the roots is equivalent to say that G has a matching, thus we have to show that Hall's condition is satisfied. Let \mathcal{B} be set of left vertices of size k and let \mathcal{C} be the set of right vertices that are connected to some element of \mathcal{B}. We have to show that $|\mathcal{C}| \geq k$. Note that for a vertex m_{i} the sum of the numbers of numbers of the coordinates of the implied
edges is 1 (it is a complete row). It follows that the sum of the number of coordinates of the edges in \mathcal{B} is k. If $\mathcal{C} \leq k-1$ the the sum of the numbers of the edges entering in C is at most $k-14$ (ever column adds up to 1) and this is impossible since the implied edges are the same as for B and by condition \mathbf{i}. Thus $|\mathcal{C}| \geq k$ as desired.
We proceed to show the the assertion by strong induction on the number of positive entries of X. For the base case note that there are at least n non-zero entries in the matrix, and if there are n then the matrix is A_{π} for some π. Assume the result is true for all matrices with less that k positive entries and let X be a matrix that satisfies the three given conditions. By the proposition we can place n non-attacking rooks on positive entries. Assume that r is the least entry under a rook. Thus we have that $X \geq r A_{\pi}$ where π is the permutation associated to the position of the rooks. Also $(1-r)^{-1}\left(X-r A_{\pi}\right)$ satisfies the three conditions and has less positive entries than X (because the entry with an r goes to zero, and no position with a zero is changed), thus $(1-r)^{-1}\left(X-r A_{\pi}\right)$ is in conv \mathcal{A}. Also $X=(1-r)\left((1-r)^{-1}\left(X-r A_{\pi}\right)\right)+r A_{\pi}$ is a convex combination of elements in \mathcal{A} and is therefore a member of \mathcal{A}, because \mathcal{A} is convex.

