2 Reducing the Hirsch's conjecture to the dstep conjecture, part 1

Let P be a d-polytope with n facets and assume $n<2 d$
2.1 Any two vertices lie in a common facet

Remark 2.1. The d-simplex has $d+1$ facets. Recall that the dual of a d-simplex is a d-simplex and a d-simplex has $d+1$ vertices.

Lemma 2.1. Any vertex of a d-polytope lies in at least d facets
Proof. Let f be the number of facets that contain $v \in \mathbb{R}^{d}$ a vertex of $P . v$ is the intersection of the supporting hyperplanes of the facets of P that contain v. In other words v is the solution of a system of f linear equations in d unknowns. As v is zero dimensional $f \geq d$.

Now take v_{1}, v_{2} two distinct vertices of P and suppose they don't lie on a common facet. Then if F is a facet of P either $v_{1} \in F$ or $v_{2} \in F$ so we need at least $2 d$ facets which contradicts the hypothesis.

$2.2 \Delta(d, n) \leq \Delta(d-1, n-1)$

Lemma 2.2. let F be a facet of P. F contains at most $n-1$ ridges of P.
Proof. fix F_{1} a facet of P. Because of the diamond shape of the poset of P and the uniqueness of the meet, any ridge contained in F_{1} is determined by a unique diamond from the $d-2$ level to the d level. This means that the well-defined map from these type of diamonds that contain F_{1} to the ridges contained in F_{1} is surjective. The number of such diamonds that contain F_{1} are less or equal than $n-1$ as the diamonds contain 2 facets and there are $n-1$ posible pairs of facets that contain F_{1}.

Lemma 2.1 implies that for any two vertices there is a path connecting both that lies in a facet of P. This together with lemma 2.2 shows that

$$
\operatorname{diam}(P) \leq \max \operatorname{diam}(\text { facet }) \leq \max _{k \leq n-1} \Delta(d-1, k)
$$

Taking the maximum on the left hand side yields

$$
\Delta(d, n) \leq \max _{k \leq n-1} \Delta(d-1, k)
$$

Now we claim ${ }^{1} \Delta(d-1, r-1) \leq \Delta(d-1, r)$ for $r \leq n-1$. Suppose $\Delta(d-1, r-1)>\Delta(d-1, r)$ and take a d-1 polytope Q with $r-1$ facets of largest diameter. Take vertices v_{1}, v_{2} of largest distance. If we intersect Q with a halfspace $H:=\{x \mid c \cdot x \leq m\}$ such that it contains all vertices of
Q except v_{2} we get a new $\mathrm{d}-1$ polytope with one more facet than Q (it adds more vertices too) and this new polytope has the property that there exists some vertex ω in this new facet such that the distance between v_{1} and ω is the same as the distance between v_{1} and v_{2}. This happens because any edge that joins some vertex with v_{2} intersects the plane $S:=\{x \mid c \cdot x=m\}$ in only one point. Then vertices of Q that were at distance 1 from v_{2} are now at distance 1 , not less, from some vertex on this facet so distances between a vertex on this facet and any other vertex not on this facet are the same as the corresponding distances to v_{2}. So the new polytope has diameter larger or equal than Q which contradicts our hypothesis. This proves our claim and we get together with the previous result that

$$
\Delta(d, n) \leq \max _{k \leq n-1} \Delta(d-1, k)=\Delta(d-1, n-1)
$$

$2.3 \Delta(d, n) \leq \Delta(n-d, 2(n-d))$

Proof. We claim that for any $0<r \leq 2 d-n$ the inequality $\Delta(d, n) \leq$ $\Delta(d-r, n-r)$ holds. $0<1 \leq 2 d-n$ and by $2.2 \Delta(d, n) \leq \Delta(d-1, n-1)$. Suppose that for some $0<r<2 d-n, \Delta(d, n) \leq \Delta(d-r, n-r)$. Note

$$
n-r<2(d-r)=2 d-2 r \Longleftrightarrow 2 r-r<2 d-n \Longleftrightarrow r<2 d-n
$$

By hypothesis this is true and we use 2.2 to conclude that $\Delta(d, n) \leq$ $\Delta(d-r, n-r) \leq \Delta(d-r-1, n-r-1)$ and our claim is proved.

Now take $r=2 d-n$. By our previous claim

$$
\Delta(d, n) \leq \Delta(d-(2 d-n), n-(2 d-n))=\Delta(n-d, 2(n-d))
$$

