
Now if ∀vi ∈ V2 c · vi < M , writing v
∗ as a convex combination of the vi, we

get
c · v∗ = c ·

�

i

µivi =
�

i

µi (c · vi)� �� �
<M

< M

a contradiction, so there exists vk ∈ V2 such that c · vk = M so vk ∈ F =
conv(V1). As a vertex of P , vk is a vertex of F so vk ∈ vert(F ) = V1, a
contradiction.

So in fact P has only d + 1 vertices. They are affinely independent, else
we do not get a full dimensional polytope. Take d vertices, they all lie in a
common d− 1 dimensional affine subspace and they determine a full dimen-
sional d − 1 polytope. So the projection of this d vertices onto this d − 1
dimensional subspace are affinely independent, and hence this d vertices are
linearly independent, so they determine a basis for Rd.

Now Let v be the vertex that does not lie on this affine subspace. Trans-
lation by −v is an affine isomorphism so we get a combinatorially equivalent
polytope with 0 as one vertex. The translation of the other vertices still
form a basis for Rd. The change of coordinates matrix from this basis to the
canonical basis is again an affine isomorphism and we get that our polytope
is combinatorially equivalent to conv(e1, ..., ed, 0) and by Lemma (1.2) this is
combinatorially equivalent to the d− simplex.

2 Reducing the Hirsch’s conjecture to the d-

step conjecture, part 1

Let P be a d-polytope with n facets and assume n < 2d

2.1 Any two vertices lie in a common facet

Remark 2.1. The d-simplex has d + 1 facets. Recall that the dual of a
d-simplex is a d-simplex and a d-simplex has d+ 1 vertices.
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Lemma 2.1. Any vertex of a d-polytope lies in at least d facets

Proof. Let f be the number of facets that contain v ∈ Rd a vertex of P . v is
the intersection of the supporting hyperplanes of the facets of P that contain
v. In other words v is the solution of a system of f linear equations in d

unknowns. As v is zero dimensional f ≥ d.

Now take v1, v2 two distinct vertices of P and suppose they don’t lie on a
common facet. Then if F is a facet of P either v1 ∈ F or v2 ∈ F so we need
at least 2d facets which contradicts the hypothesis.

2.2 ∆(d, n) ≤ ∆(d− 1, n− 1)

Lemma 2.2. let F be a facet of P . F contains at most n− 1 ridges of P .

Proof. fix F1 a facet of P . Because of the diamond shape of the poset of P
and the uniqueness of the meet, any ridge contained in F1 is determined by
a unique diamond from the d − 2 level to the d level. This means that the
well-defined map from these type of diamonds that contain F1 to the ridges
contained in F1 is surjective. The number of such diamonds that contain F1

are less or equal than n − 1 as the diamonds contain 2 facets and there are
n− 1 posible pairs of facets that contain F1.

Lemma 2.1 implies that for any two vertices there is a path connecting
both that lies in a facet of P . This together with lemma 2.2 shows that

diam(P ) ≤ maxdiam(facet) ≤ max
k≤n−1

∆(d− 1, k)

Taking the maximum on the left hand side yields

∆(d, n) ≤ max
k≤n−1

∆(d− 1, k)

Now we claim1 ∆(d − 1, r − 1) ≤ ∆(d − 1, r) for r ≤ n − 1. Suppose
∆(d − 1, r − 1) > ∆(d − 1, r) and take a d-1 polytope Q with r − 1 facets
of largest diameter. Take vertices v1, v2 of largest distance. If we intersect
Q with a halfspace H := {x|c · x ≤ m} such that it contains all vertices of

1And proof in a rather heuristically way
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Q except v2 we get a new d-1 polytope with one more facet than Q (it adds
more vertices too) and this new polytope has the property that there exists
some vertex ω in this new facet such that the distance between v1 and ω is
the same as the distance between v1 and v2. This happens because any edge
that joins some vertex with v2 intersects the plane S := {x|c · x = m} in
only one point. Then vertices of Q that were at distance 1 from v2 are now
at distance 1, not less, from some vertex on this facet so distances between
a vertex on this facet and any other vertex not on this facet are the same as
the corresponding distances to v2. So the new polytope has diameter larger
or equal than Q which contradicts our hypothesis. This proves our claim and
we get together with the previous result that

∆(d, n) ≤ max
k≤n−1

∆(d− 1, k) = ∆(d− 1, n− 1)

2.3 ∆(d, n) ≤ ∆(n− d, 2(n− d))

Proof. We claim that for any 0 < r ≤ 2d − n the inequality ∆(d, n) ≤
∆(d− r, n− r) holds. 0 < 1 ≤ 2d− n and by 2.2 ∆(d, n) ≤ ∆(d− 1, n− 1).
Suppose that for some 0 < r < 2d− n, ∆(d, n) ≤ ∆(d− r, n− r). Note

n− r < 2(d− r) = 2d− 2r ⇐⇒ 2r − r < 2d− n ⇐⇒ r < 2d− n

By hypothesis this is true and we use 2.2 to conclude that ∆(d, n) ≤
∆(d− r, n− r) ≤ ∆(d− r − 1, n− r − 1) and our claim is proved.

Now take r = 2d− n. By our previous claim

∆(d, n) ≤ ∆(d− (2d− n), n− (2d− n)) = ∆(n− d, 2(n− d))
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