Proof. Let P be a d-dimensional polytope that is $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$-neighborly. Suppose for a contradiction that P has a subset $V=\left\{v_{1}, \ldots, v_{d+2}\right\}$ consisting of $d+2$ vertices. Then, V is affinely dependent, so there is I such that $v_{I} \in V$ and $v_{I}=\sum_{i=1}^{d+2} \lambda_{i} v_{i}$ with $\sum_{i=1}^{d+2} \lambda_{i}=1$. Hence, $0=v_{I}-\sum_{i=1}^{d+2} \lambda_{i} v_{i}=v_{I}-\lambda_{1} v_{1}-\ldots \lambda_{d+2} v_{d+2}$ and $1-\lambda_{1}-\ldots \lambda_{d+2}=0$. Since $\sum_{i=1}^{d+2} \lambda_{i}=1$, not all λ_{i} are zero. Let $\lambda_{I}^{\prime}=1-\lambda_{I}$. Then, $\lambda_{1} v_{1}+\cdots+\lambda_{I}^{\prime} v_{I}+\ldots \lambda_{d+2} v_{d+2}=0$ with $\lambda_{1}+\cdots+\lambda_{I}^{\prime}+\cdots+\lambda_{d+2}=0$ and not all λ_{i} are zero. Hence, there are nonzero λ_{j} and λ_{k} with opposite signs. Relabeling the v_{i} and λ_{i} if necessary, let $\lambda_{1}, \ldots, \lambda_{n}$ be nonnegative (i.e ≥ 0) and $\lambda_{n+1} \ldots \lambda_{d+2}$ be nonpositive (i.e. ≤ 0). Since $\lambda_{1}+\cdots+\lambda_{n}+\lambda_{n+1}+\ldots \lambda_{d+2}=0$, $\lambda_{1}+\cdots+\lambda_{n}=-\lambda_{n+1}+\cdots+\lambda_{d+2}$. Let $\Lambda=\lambda_{1}+\cdots+\lambda_{n}$. Then, $\Lambda>0$ because at least one of $\lambda_{1}, \ldots, \lambda_{n}$ is nonzero. Hence, $1=\frac{1}{\Lambda} \sum_{i=1}^{n} \lambda_{i}=-\frac{1}{\Lambda} \sum_{i=n+1}^{d+2} \lambda_{i}$, so $v=$ $\sum_{i=1}^{n} \frac{\lambda_{i}}{\Lambda} v_{i}=\sum_{i=1}^{d+2}\left(-\frac{\lambda_{i}}{\Lambda} v_{i}\right)$ is a convex combination of v_{1}, \ldots, v_{n} and a convex combination of v_{n+1}, \ldots, v_{d+2}, so $v \in \operatorname{conv}\left(v_{1}, \ldots, v_{n}\right)$ and $v \in \operatorname{conv}\left(v_{n+1}, \ldots, v_{d+2}\right)$, implying $v \in$ $\operatorname{conv}\left(v_{1}, \ldots, v_{n}\right) \cap \operatorname{conv}\left(v_{n+1}, \ldots, v_{d+2}\right)$. Let $V_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{v_{n+1}, \ldots, v_{d+2}\right\}$. Then, $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2} \neq \emptyset$, and $\operatorname{conv}\left(V_{1}\right) \cap \operatorname{conv}\left(V_{2}\right) \neq \emptyset$. Hence, $V_{1} \cap V_{2}=\emptyset$, $|V|=\left|V_{1}\right|+\left|V_{2}\right|$, so renaming the sets if necessary, let $\left|V_{1}\right| \leq\left\lfloor\frac{d}{2}\right\rfloor+1$. Since $\operatorname{conv}\left(V_{1}\right) \cap$ $\operatorname{conv}\left(V_{2}\right) \neq \emptyset$, every hyperplane H that contains V_{1} and does not contain points in the interior of P, contains points from $\operatorname{conv}\left(V_{2}\right)$, so H also contains at least one vertex from V_{2}. Then, $\operatorname{conv}\left(V_{1}\right)$ has vertices that are not in V_{1}, so $\operatorname{conv}\left(V_{1}\right)$ does not define a face consisting of $\left|V_{1}\right|$ vertices, implying that P is not $\left|V_{1}\right|$-neighborly, which is a contradiction to P being $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$-neighborly. Hence, P has less than $d+2$ vertices. Since P is d-dimensional, P has $d+1$ vertices, so P is a simplex. Therefore, if a d-dimensional polytope is $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$ - neighborly, then it is a simplex.

