
5. (Joint work with Diego Cifuentes and Fabian Prada)

• We construct T−1 reversing from top to bottom: Given a flag F construct the inverse
recursively in the following way T−1F (−1) = ∅, T−1F (d) = P and, for each i > 0,
T−1F (d− i) is the unique face in dimension d− i other than F (d− i) which is contained
in T−1F (d− i + 1) and contains F (d− i− 1).

• For this consider the following diagram called yapi diagram (courtesy of Fabian Latorre)

The y axis represent the dimension of the face (we ignore dimension −1 and d, in this
case 6, because all the flags are equal there), and the x axis represent how many times
we have applied T to the initial flag in the first column. The lines represent containment
if a point is above another. A funny thing to note is that the diagonals are also flags,
and the action of T move them to the left, contrary to what it does to our normal flags.
Lets say the point (i, j) is the one in column i row j.

Lemma (i, j) is not contained in (i + 1, k) for j ≤ k
Proof By contradiction suppose (i, j) ⊂ (i+1, k). If j < k then, since (i+1, j) ⊂ (i+1, k),
by definition (i + 1, k) should contain the joint of those two points (i, j + 1). Doing this
successively we arrive to the case j = k, so that (i, k) ⊂ (i + 1, k), but this is clearly
impossible since (i+1, k) ⊂ (i+1, k) and by the same argument (i+1, k) would contain
(i, k + 1), absurd since it has more dimension.

Now we are ready to prove that in the yapi diagram there can not be two equal ele-
ments in the same row. Suppose we have two equal points (i, k) = (l, k), with i < l.
Then the idea is that with (i, k) we can slide down through a diagonal and in (l, k) slide
up until we get a situation described by the lemma, hence getting a contradiction.

Each time you go one step down on the diagonal of (i, k) or one up in the diagonal
of (l, k) the columns of the points are getting one unit closer. And we can do this k
times going down and d− k− 1 going up, so we can reduce the diference of the columns
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in d− 1, but we are supposing that l − i ≤ d, so we can always bring that difference to
one and get a contradiction by the lemma.

• T is weird

6. We will break the solution into different steps

Step 1.: The points such that xd = 1 form the facet with the greatest amount of
vertices

They clearly are a facet since they form a complete cube Cd−1, its size is 2d−1. If we had all
the 0/1 points we would had a cube Cd, a facet of our polytopes can be interpreted as a set of
vertices of that cube which lies all in dimension d− 1, so they must satisfy a linear equation
of the type

�
xiγi, where γi is one of −1, 0, 1. Lets prove by induction that such an equation

cannot have more than 2d−1 solutions of type 0/1. The equation xi = 1, 0 always attain that
maximum. Apart from that, in d = 2 just x1 − x2 and x1 + x2 satisfy (by checking in the
square). For d = 3, suppose more than 2 of the γ’s are nonzero. Then the equation is of type
x1 =sgnx2+sgnx3. So there are two options for x1 but not for both of them we can have the
maximum of two solutions for x2 and x3, so in this case we have less than four solutions. By
induction if more than k of the γ’s are nonzero, you aislate one variable and you have two
scenarios of a previous case, but since you cannot attain the maximum, you cannot attain
the maximum of an exponential in two if you have more than 3 variables on your equation.
So you can have one or two, corresponding with equations of the type xi = 0, 1, xi − xj = 0
and xi + xj = 1.
Now lets check for those on our polytopes in S. Equations of the first type are not satisfied
with the maximum (because of the points we require not to be) except for xd = 1. For the
second type of equation they are not satisfied (because the absence of e1) except maybe for
x1 = xi, i < d, but in that case the hypotetical facet would intersect the facet xd = 1 in
some kind of diagonal which is not a proper face of that big facet, a contradiction since the
intersection on faces should be a face contained on both. A similar argument works for the
third type of equations. So the only facet with the maximum is xd = 1

The important consequence here is that if two polytopes on S are combinatorially equivalent
(using the definition of equivalence given in the first homework) a map of equivalence between
them should send that big facet into the other one. This means that the points above, i.e.
with xd = 1, are mapped to the points above because they form the unique maximal facet.
Also this facet should be the same in both polytopes so we need to map the points in the
above to themselves in such a way that the cube formed is combinatorially equivalent to the
original one. The technical term here is symmetry

Step 2.: That symmetry of the upper cube determines the rest
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