Problem 4

Note that we are excluding the empty set from this bijection. Suppose $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. Let $b_{1}=\min \left\{a_{i}: 1 \leq i \leq n\right\}$ and for $k>1$, suppose that $\left\{a_{i}: a_{i}>b_{k-1}, 1 \leq i \leq n\right\} \neq \emptyset$, then let $b_{k}=\min \left\{a_{i}: a_{i}>b_{k-1}, 1 \leq i \leq n\right\}$. Then $\exists s \leq n$, such that s is the maximal number such that $\left\{a_{i}: a_{i}>b_{s-1}, 1 \leq i \leq n\right\} \neq \emptyset$. So for $1 \leq k \leq s$, let $C_{k}=\left\{i: a_{i}=b_{k}\right\}$. Then the face in Π_{n-1} that maximizes a is completely dependent on the sets C_{1}, \ldots, C_{s}.

Proof: Let F be the face of Π_{n-1} that maximizes a, and let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a vertex of F. Let $\left|C_{i}\right|=c_{i}$ for all i. Then we will show that $\forall j \in C_{1}, v_{j} \in\left\{1,2, \ldots, c_{1}\right\}$. Suppose $v_{j} \notin\left\{1,2, \ldots, c_{1}\right\}$, then $v_{j}>c_{1}$ and $\exists k \notin C_{1}$ with $v_{k} \in\left\{1,2, \ldots, c_{1}\right\}$. Let $w=\left(w_{1}, \ldots, w_{n}\right)$ be the vertex of P that is identical to v except the $j^{\text {th }}$ and $k^{t h}$ coordinate is switched. In other words, $w_{j}=v_{k}, w_{k}=v_{j}$ and $w_{i}=v_{i}$ for $i \neq j, k$. Then

$$
a \cdot w-a \cdot v=a_{k}\left(w_{k}-v_{k}\right)+a_{j}\left(w_{j}-v_{j}\right)=a_{k}\left(v_{j}-v_{k}\right)+a_{j}\left(v_{k}-v_{j}\right)=\left(v_{j}-v_{k}\right)\left(a_{k}-a_{j}\right)>0,
$$

since $v_{j}>v_{k}$ and $a_{k}>a_{j}$. Thus, $a \cdot w>a \cdot v$ so v does not maximize a. A contradiction.
Similarly, now that we have shown $j \in C_{1}$, implies $v_{j} \in\left\{1,2, \ldots, c_{1}\right\}$, the same proof will give us $j \in C_{2}$ implies $v_{j} \in\left\{c_{1}+1, c_{1}+2, \ldots, c_{1}+c_{2}\right\}$, and more generally $j \in C_{i}$ implies $v_{j} \in\left\{c_{1}+c_{2}+\ldots+c_{i-1}+1, c_{1}+c_{2}+\ldots+c_{i-1}+2, \ldots, c_{1}+c_{2}+\ldots+c_{i-1}+c_{i}\right\}$. It is also clear that if u is another vertex that satisfies $j \in C_{i}$ implies $u_{j} \in\left\{c_{1}+c_{2}+\ldots+c_{i-1}+1, c_{1}+c_{2}+\ldots+c_{i-1}+\right.$ $\left.2, \ldots, c_{1}+c_{2}+\ldots+c_{i-1}+c_{i}\right\}$, then $a \cdot u=a \cdot v$. So u maximizes a. Thus, u is a vertex in F if and only if $j \in C_{i}$ implies $u_{j} \in\left\{c_{1}+c_{2}+\ldots+c_{i-1}+1, c_{1}+c_{2}+\ldots+c_{i-1}+2, \ldots, c_{1}+c_{2}+\ldots+c_{i-1}+c_{i}\right\}$.

So we have a map $F \mapsto\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$ where $\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$ is an ordered partition of $[n]$. Call this map ϕ, we want to show that ϕ is bijective. Suppose $\phi(F)=\phi(G)=\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$, then: v is a vertex of $F \Leftrightarrow j \in C_{i}$ implies $v_{j} \in\left\{c_{1}+c_{2}+\ldots+c_{i-1}+1, c_{1}+c_{2}+\ldots+c_{i-1}+\right.$ $\left.2, \ldots ., c_{1}+c_{2}+\ldots+c_{i-1}+c_{i}\right\} \Leftrightarrow v$ is a vertex of G. So ϕ is injective.

Now let $\left[D_{1}\right]\left[D_{2}\right] \ldots\left[D_{r}\right]$ be an ordered partition of $[n]$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, where if $j \in D_{i}$ then $x_{j}=i$. Now there exist a face, F, that maximizes x. Constructing C_{1}, \ldots, C_{s} for F (as we did in the first paragraph of this problem), we see trivially that $r=s$, and $D_{i}=C_{i}$ for $1 \leq i \leq s$. Thus, $\phi(F)=\left[D_{1}\right]\left[D_{2}\right] \ldots\left[D_{r}\right]$. We still need to show that F is not the empty set. Let $\left|D_{i}\right|=d_{i}$. Let φ_{i} be any bijection between D_{i} and $\left\{d_{1}+d_{2}+\ldots+d_{i-1}+1, d_{1}+\right.$ $\left.d_{2}+\ldots+d_{i-1}+2, \ldots, d_{1}+d_{2}+\ldots+d_{i-1}+d_{i}\right\}$. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ such that if $j \in D_{i}$ then $y_{j}=\varphi_{i}(j)$. Then y permutes the elements of $[n]$, so y is a vertex of Π_{n-1}. Also, $j \in D_{i}$ implies $y_{j} \in\left\{d_{1}+d_{2}+\ldots+d_{i-1}+1, d_{1}+d_{2}+\ldots+d_{i-1}+2, \ldots, d_{1}+d_{2}+\ldots+d_{i-1}+d_{i}\right\}$. So y maximizes x. Hence F is not empty, and so ϕ is surjective.

Finally, we want to show that is $F \mapsto\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$ then $s=n-\operatorname{dim}(F)$. We will call $\left[D_{1}\right]\left[D_{2}\right] \ldots\left[D_{r}\right]$ a refinement of $\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$, if $\forall i, \exists j$ such that $D_{i} \subseteq C_{j}$ and if $D_{i} \subseteq C_{j}$ and $D_{i^{\prime}} \subseteq C_{j^{\prime}}$ then $i<i^{\prime}$ implies that $j \leq j^{\prime}$. Now suppose F and G are faces with $\phi(F)=\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$ and $\phi(G)=\left[D_{1}\right]\left[D_{2}\right] \ldots\left[D_{r}\right]$ and $\left[D_{1}\right]\left[D_{2}\right] \ldots\left[D_{r}\right]$ is a refinement of $\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right]$. Then, there exists $0=n_{0}<n_{1}<\ldots<n_{s}=n$ such that

$$
C_{i}=\bigcup_{j=n_{i-1}+1}^{n_{i}} D_{j} .
$$

Let $\left|D_{i}\right|=d_{i}$ and $\left|C_{i}\right|=c_{i}$ and let v be a vertex of G. Then $j \in D_{i}$ implies $v_{j} \in\left\{d_{1}+d_{2}+\right.$ $\left.\ldots+d_{i-1}+1, d_{1}+d_{2}+\ldots+d_{i-1}+2, \ldots, d_{1}+d_{2}+\ldots+d_{i-1}+d_{i}\right\}$, and $n_{k-1}+1 \leq i \leq n_{k}$ for some
$1 \leq k \leq s$. This implies that $v_{j} \in\left\{n_{k-1}+1, n_{k-1}+2, \ldots, n_{k}\right\}$. So v is a vertex of F. Thus $G \subset F$. Since ϕ is injective, we know that $F \neq G$ (assuming $\left[C_{1}\right]\left[C_{2}\right] \ldots\left[C_{s}\right] \neq\left[D_{1}\right]\left[D_{2}\right] \ldots\left[D_{r}\right]$) so G is a subface of F. However, if \mathfrak{C}_{k} is a ordered partition of $[n]$ into $n-k$ parts, then there exists ordered partitions of $[n], \mathfrak{C}_{0}, \mathfrak{C}_{1}, \ldots, \mathfrak{C}_{k-1}, \mathfrak{C}_{k+1}, \ldots, \mathfrak{C}_{n-1}$, such that \mathfrak{C}_{i} partitions $[n]$ into $n-i$ parts and \mathfrak{C}_{i} is a refinement of \mathfrak{C}_{i-1}. Suppose $\forall i, F_{i}$ is a face with $\phi\left(F_{i}\right)=\mathfrak{C}_{n-i}$. Then we have $F_{0} \subset F_{1} \subset \ldots \subset F_{n}$. However, since this is a chain of n pairwise disjoint faces, none of which are the empty set, then this implies that $\operatorname{dim}\left(F_{i}\right)=i$. So our proof is complete.

