3. (a) $f_{\mathrm{pyr}(P)}=(1+x) f_{P}(x)+1$. We assume that $P \subset \mathbb{R}^{e}$ and for the construction of P we embed it into $x_{e+1}=0$. Recall that a face of a polytope is the convex hull of the vertices of P it contains. Let \mathbf{v} be the vertex added to obtain $\operatorname{pyr}(P)$ and let F be a face of $\operatorname{pyr}(P)$. We study two cases:

- If $\mathbf{v} \notin F$ we claim that F is a face of P. All the vertices of F lie in P. Let c be a functional that is maximized by F. Every point on P has it's last coordinate equal to zero, so we can omit the last coordinate of c and view it as a functional in \mathbb{R}^{e} acting on P. This shows that F must be a face of P since the values of c and the new functional coincide in all of P.
- If $\mathbf{v} \in F$ we claim that the convex hull of the vertices of F different from \mathbf{v} are a face of P. We can assume that $\mathbf{v} \in$ spane $_{e+1}$ by translating the whole \mathbb{R}^{e-1} (this gives an isometry, thus the combinatorial structure of P does not change, because the geometry of the figure does not change at all). Now let \mathbf{c} be vector such that $c \cdot$ is maximized by F. Write $\mathbf{c}=\mathbf{c}^{\prime}+\mathbf{c}^{\perp}$, where \mathbf{c}^{\prime} is in $x_{e+1}=0$ and $\mathbf{c}^{\perp} \in \operatorname{span}\left(\mathbf{e}_{e+1}\right)$. Then for \mathbf{u} a vertex in P we have that $\mathbf{c} \cdot \mathbf{u}=\mathbf{c}^{\prime} \cdot \mathbf{u}$ and $\mathbf{c} \cdot \mathbf{v}=\mathbf{c}^{\perp} \cdot \mathbf{v}$. Thus \mathbf{c}^{\prime} maximizes exactly the vertices of F in P and we can view it as a vector in \mathbb{R}^{e} thus if we take the vertices of F that are different from \mathbf{v}, because \mathbf{c}^{\prime} maximizes them.

We showed that a face of $\operatorname{pyr}(P)$ is either a face of P or a pyramid of a face of P. The dimension of a face increases by one if we take the pyramid. Thus - if $d \geq 1$ - the d-dimensional faces of $\operatorname{pyr}(P)$ are given by $f_{d}+f_{d-1}$ where f_{k} denotes the k dimensional faces of P. Since we added exactly one vertex we get that $f_{\mathrm{pyr}(P)}(x)=$ $1+f_{P}(x)+x f_{P}(x)=f_{P}(x)(x+1)+1$.
(b) $f_{P \times Q}(x)=f_{P}(x) f_{Q}(x)$. We claim that F is a face of $P \times Q$ if and only if F is of the form $G \times H$ where G is a face of P and H is a face of Q. If this is true then we are done, because the dimension of a product is the sum of the dimensions. Thus the answer follows immediately if we prove that the classification is well done.
If c is a linear functional in the space of $P \times Q$, then we can view it as $\left(c_{p}, c_{q}\right)$ where c_{p} is in the space of P and c_{q} is in the space of Q. Thus the elements that maximize c y $P \times Q$ come from some element that maximizes c_{p} in the first coordinate and some element that maximizes c_{q} in Q, that is, the face is the product of two faces.
If G and H are faces of P and Q respectively let c_{G} and c_{H} be functionals maximized by G and H respectively. Then $\left(c_{G}, c_{H}\right)$ is maximized by $G \times H$, since the coordinates in c_{G} only act on the part that comes from G and the same for H (it is a direct dot product).

