
• 9 edges In this case we have that v+f = 11 . Thus as in the previous cases min{v, f} ≥ 5
thus v = 5, f = 6 or v = 6, f = 5. We deal first with the case f = 5 and show that
there is a unique 3 -polytope. Now
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This shows that the largest face has more than three sides. Note that the largest size
can’t be a hexagon, because we just have 6 vertices and the polytope is three dimensional.
If the largest face has five sides, then the polytope is the pyramid of a pentagon that
has 10 edges. Thus the maximum side is a quadrilateral. Then by the property of the
sum there are three quadrilaterals. Now any to quadrilaterals have to share two vertices,
because there are 6 vertices and they can’t share three vertices (or the 6 points would
be on same plane). Two quadrilaterals give the six vertices so the resulting polytope is
the one in the left hand side of Fig. 3. It is the unique polytopes with 9 edges and 5
faces. It’s dual is the left hand side of the figure and is the unique one with 6 vertices,
because P

∆2
= P for every polytope, and distinct polytopes have distinct duals.

Figure 3: The 3-Polytopes with nine edges

3. (a) fpyr(P ) = (1 + x)fP (x) + 1. We assume that P ⊂ Re and for the construction of P we
embed it into xe+1 = 0. Recall that a face of a polytope is the convex hull of the vertices
of P it contains. Let v be the vertex added to obtain pyr(P ) and let F be a face of
pyr(P ). We study two cases:

• If v /∈ F we claim that F is a face of P . All the vertices of F lie in P . Let c be a
functional that is maximized by F . Every point on P has it’s last coordinate equal
to zero, so we can omit the last coordinate of c and view it as a functional in Re

acting on P . This shows that F must be a face of P since the values of c and the
new functional coincide in all of P .

• If v ∈ F we claim that the convex hull of the vertices of F different from v are a
face of P . We can assume that v ∈ spanee+1 by translating the whole Re−1 (this
gives an isometry, thus the combinatorial structure of P does not change, because
the geometry of the figure does not change at all). Now let c be vector such that c ·
is maximized by F . Write c = c�+c⊥, where c� is in xe+1 = 0 and c⊥ ∈ span(ee+1).
Then for u a vertex in P we have that c · u = c� · u and c · v = c⊥ · v. Thus c�

maximizes exactly the vertices of F in P and we can view it as a vector in Re thus
if we take the vertices of F that are different from v, because c� maximizes them.

3



We showed that a face of pyr(P ) is either a face of P or a pyramid of a face of P .
The dimension of a face increases by one if we take the pyramid. Thus - if d ≥ 1
- the d-dimensional faces of pyr(P ) are given by fd + fd−1 where fk denotes the k

dimensional faces of P . Since we added exactly one vertex we get that fpyr(P )(x) =
1 + fP (x) + xfP (x) = fP (x)(x+ 1) + 1.

(b) fP×Q(x) = fP (x)fQ(x). We claim that F is a face of P × Q if and only if F is of the
form G × H where G is a face of P and H is a face of Q. If this is true then we are
done, because the dimension of a product is the sum of the dimensions. Thus the answer
follows immediately if we prove that the classification is well done.
If c is a linear functional in the space of P × Q, then we can view it as (cp, cq) where
cp is in the space of P and cq is in the space of Q. Thus the elements that maximize c

y P × Q come from some element that maximizes cp in the first coordinate and some
element that maximizes cq in Q, that is, the face is the product of two faces.
If G and H are faces of P and Q respectively let cG and cH be functionals maximized
by G and H respectively. Then (cG, cH) is maximized by G×H, since the coordinates
in cG only act on the part that comes from G and the same for H (it is a direct dot
product).

4. Let c = (c1, c2, . . . , cn) ∈ (Rn)∗. The rearrangement inequality implies directly that if σ is a
permutations of [n] such that cσ−1(1) ≤ cσ−1(2) ≤ · · · ≤ cσ−1(n), then it maximizes

�
τ(i)ci

where τ varies among the permutations of [n] and the converse is also true. Thus the vertices
of the face Pc correspond to the permutations that order c. Thus two functionals yield the
same face if and only if the relative order between their coordinates is exactly the same.
Assume now that there are k different values m1 < m2 < · · · < mk in the set that contains
the coordinates. The last map induces an ordered partition A1, A2, . . . , Ak of [n] given by
the relation j ∈ Ai if and only if cj = mi. We can easily recover the face we have from a
given partition. We still have to check that de dimension of the face coincides with de n

minus the size of the partition induced. Given a partition A1, . . . , An−k, we take the vector
x = (x1, x2, . . . , xn), in such a way that xi = k if xi ∈ Ak. Let bi = |

�
k≤i

Ai|. The affine
hull of of the vertices is given by the vectors that satisfy the system of equations given by

�
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because those are exactly the equalities satisfied by the vertices. When we put this system
into matrix form it is consistent (every row is non zero), every row has a pivot and every
variable appears in exactly one row. Thus the number of free variables is the number of
variables minus the number of rows, that is n − (n − k) = k. This is the dimension of the
affine space that solves the system. It follows that the face associated to the ordered partition
with n− k elements is k-dimensional.

5. (a) We construct an inverse and since we are in finite sets the bijection is implied because
both sets have the same size (they are equal) and the inverse implies injectivity. For a
flag F in P consider F∆ to be F in the dual (the same path after inverting the face
poset). Let Y F = (TF∆)∆. Then Y is an inverse for T , because it is defining inductively
to complete the intervals of height 2 downwards instead of upwards in the poset.
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