- 3. (a) $f_{\text{pyr}(P)} = (1+x)f_P(x) + 1$. We assume that $P \subset \mathbb{R}^e$ and for the construction of P we embed it into $x_{e+1} = 0$. Recall that a face of a polytope is the convex hull of the vertices of P it contains. Let \mathbf{v} be the vertex added to obtain pyr(P) and let F be a face of pyr(P). We study two cases:
 - If $\mathbf{v} \notin F$ we claim that F is a face of P. All the vertices of F lie in P. Let c be a functional that is maximized by F. Every point on P has it's last coordinate equal to zero, so we can omit the last coordinate of c and view it as a functional in \mathbb{R}^e acting on P. This shows that F must be a face of P since the values of c and the new functional coincide in all of P.
 - If $\mathbf{v} \in F$ we claim that the convex hull of the vertices of F different from \mathbf{v} are a face of P. We can assume that $\mathbf{v} \in \operatorname{span} \mathbf{e}_{e+1}$ by translating the whole \mathbb{R}^{e-1} (this gives an isometry, thus the combinatorial structure of P does not change, because the geometry of the figure does not change at all). Now let \mathbf{c} be vector such that $c \cdot \mathbf{c}$ is maximized by F. Write $\mathbf{c} = \mathbf{c}' + \mathbf{c}^{\perp}$, where \mathbf{c}' is in $x_{e+1} = 0$ and $\mathbf{c}^{\perp} \in \operatorname{span}(\mathbf{e}_{e+1})$. Then for \mathbf{u} a vertex in P we have that $\mathbf{c} \cdot \mathbf{u} = \mathbf{c}' \cdot \mathbf{u}$ and $\mathbf{c} \cdot \mathbf{v} = \mathbf{c}^{\perp} \cdot \mathbf{v}$. Thus \mathbf{c}' maximizes exactly the vertices of F in P and we can view it as a vector in \mathbb{R}^e thus if we take the vertices of F that are different from \mathbf{v} , because \mathbf{c}' maximizes them.

We showed that a face of pyr(P) is either a face of P or a pyramid of a face of P. The dimension of a face increases by one if we take the pyramid. Thus - if $d \ge 1$ - the d-dimensional faces of pyr(P) are given by $f_d + f_{d-1}$ where f_k denotes the kdimensional faces of P. Since we added exactly one vertex we get that $f_{pyr(P)}(x) = 1 + f_P(x) + xf_P(x) = f_P(x)(x+1) + 1$.

(b) $f_{P \times Q}(x) = f_P(x)f_Q(x)$. We claim that F is a face of $P \times Q$ if and only if F is of the form $G \times H$ where G is a face of P and H is a face of Q. If this is true then we are done, because the dimension of a product is the sum of the dimensions. Thus the answer follows immediately if we prove that the classification is well done.

If c is a linear functional in the space of $P \times Q$, then we can view it as (c_p, c_q) where c_p is in the space of P and c_q is in the space of Q. Thus the elements that maximize c y $P \times Q$ come from some element that maximizes c_p in the first coordinate and some element that maximizes c_q in Q, that is, the face is the product of two faces.

If G and H are faces of P and Q respectively let c_G and c_H be functionals maximized by G and H respectively. Then (c_G, c_H) is maximized by $G \times H$, since the coordinates in c_G only act on the part that comes from G and the same for H (it is a direct dot product).