6. (a) If $P, Q \subset \mathbb{R}^{d}$ are polytopes, prove that $P \cap Q$ is also a polytope.

Proof. Since P and Q can be satisfied by a system in inequalities, the intersection is the set of points that satisfy all the inequalities in P and Q. It is bounded because both P and Q are bounded. Therefore it is a polytope.
(b) If $P, Q \subset \mathbb{R}^{d}$ are polytopes, prove that $P+Q$ is also a polytope.

Proof. Let $P=\operatorname{conv}\left(p_{1}, \cdots, p_{n}\right)$ and $Q=\operatorname{conv}\left(q_{1}, \cdots, q_{m}\right)$. Define the following set: $S=\operatorname{conv}\left(p_{i}+q_{j} \mid i \in[n]\right.$ and $\left.j \in[m]\right)$ I will show that $P+Q=S$. To show $P+Q \supseteq S$, let $x \in S$ be given. Then you can write x in the following way: There exist $\gamma_{i j}$ s such that $\sum \gamma_{i j}=1$ and each $\gamma_{i j} \geq 0$ so that:

$$
\begin{gathered}
x=\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j}\left(p_{i}+q_{j}\right) \\
x=\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j} p_{i}+\gamma_{i j} q_{j} \\
x=\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j} p_{i}+\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j} q_{j} \\
x=\sum_{i=1}^{n} p_{i} \sum_{j=1}^{m} \gamma_{i j}+\sum_{j=1}^{m} q_{j} \sum_{i=1}^{n} \gamma_{i j}
\end{gathered}
$$

Notice that if we define $\sum_{i=1}^{n} \gamma_{i j}=\mu_{j}$ and $\sum_{j=1}^{m} \gamma_{i j}=\lambda_{i}$, then we have (by construction) that $\sum \lambda_{i}=\sum \mu_{j}=1$ and $\lambda_{i}, \mu_{j} \geq 0$. We are left with:

$$
x=\sum_{i=1}^{n} \lambda_{i} p_{i}+\sum_{j=1}^{m} \mu_{j} q_{j}
$$

Thus, x is a convex combination of vertices of P plus a convex combination of vertices in Q. In other words, we have $x=p+q$ for some $p \in P$ and $q \in Q$; therefore $S \subseteq P+Q$.
Now to show $P+Q \subseteq S$, let $x \in P+Q$ be given. Then there exist $p \in P$ and $q \in Q$ such that $x=p+q$. We can also write p and q as convex combinations of vertices from their respective sets. so $x=\sum p_{i} \lambda_{i}+\sum q_{j} \mu_{j}$ we can break up λ_{i} into the sum of m terms such,
i.e. $\lambda_{i}=\sum_{j=1}^{m} \gamma_{i j}$. Similarly, you can break up μ_{j} into the sum of n terms so that $\sum_{i=1}^{n} \gamma_{i j}$. You are then left with:

$$
x=\sum_{i=1}^{n} p_{i} \sum_{j=1}^{m} \gamma_{i j}+\sum_{j=1}^{m} q_{j} \sum_{i=1}^{n} \gamma_{i j}
$$

Which can lead back to:

$$
x=\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j}\left(p_{i}+q_{j}\right)
$$

Again, by construction, $\sum_{i} \sum_{j} \gamma_{i j}=1$ and $\gamma_{i j} \geq 0$, so it is a convex combination of vertices of the form $p_{i}+q_{j}$. So, $x \in S$; therefore, $P+Q \subseteq S$.
(c) If $P \subset \mathbb{R}^{d}$ and $Q \in \mathbb{R}^{e}$ are polytopes, prove that $P \times Q$ is also a polytope. Proof. Consider the H-description of polytopes. Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq \alpha\right\}$ and $Q=$ $\left\{y \in \mathbb{R}^{d}: B y \leq \beta\right\}$. Let $S=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{d+e}:\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right] \leq\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]\right\}$ Notice, you can $S=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{d+e}:\left[\begin{array}{l}A x \\ B y\end{array}\right] \leq\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]\right\}=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{d+e}: x \in P\right.$ and $\left.y \in Q\right\}=P \times Q$

