
4. We have 7 inequalities that bound x1 above or below in terms of x2. The values that are

greater that x1 are 4, 11−x2
2 and 2x2. The ones that are smaller than x1 are 9 − 4x2, 2 −

x2
2 , 3x2 −

17
2 , 1 +

x2
6

Comparing 4 against the small ones we get:

x2 ≥
4

5

x2 ≥ −4

25

6
≥ x2

18 ≥ x2

Comparing
11−x2

2 against the small ones we get:

x2 ≥ 1

11

2
≥ 2(trivial!)

4 ≥ x2
27

4
≥ x2

Finally, comparing 2x2 against the small ones we get:

x2 ≥
3

2

x2 ≥
4

5

17

2
≥ x2

x2 ≥
1

12

If all the above inequalities are satisfied simultaneously, then we can find values of x1. The

smallest upper bound for x2 is 4 and the biggest lower bound is
3
2 . It follows proj1(P ) = [

3
2 , 4].

5. (a) Lemma 1: Let P ⊂ Rd be a d dimensional polytope with vertices v1, , v2, . . . , vt. A
point x ∈ P is interior if and only if cone{vi − x} = Rd.
Proof: We may assume that x = 0 adding −x to P .

⇒) Assume first that 0 is interior. Then there is an open ball Br(0) that is completely

contained in P . Now let v ∈ Rd and let k be a positive real number such that �kv� < r.
Then kv ∈ Br(0) ⊂ P , so kv =

�
λivi for some non negative lambda such that

�
λi = 1.

It follows that v =
�

k−1λivi and we are done since k−1λi ≥ 0 for all i.

⇐) Assume that x is not an interior point. Then x is satisfies an equality of the H-

Polytope equations (otherwise it is in the intersection of the open half planes). Take a

normal vector v to hyperplane at 0 is in, that satisfies the opposite inequality. All the

4



positive multiples of v do not belong P , because the intersection of span{v} and the hy-

perplane is unique and 0 is in the intersection. Thus it cannot happen that v ∈ cone{vi},
because if

�
λivi = v, with λi ≥ 0, then we can divide by the sum of the λi and get

a positive multiple of v that is a convex combination of {vi} and is therefore in P . It

follows that cone{vi} �= Rd.

Lemma 2: Let B ⊆ Rd be a finite set of vectors that contains a basis b1, b2, . . . , bd of
Rd and such that −

�
bi ∈ cone(B). Then cone(B) = Rd

Proof: Let y ∈ Rd. Since {bi} is a basis there are real numbers ri such that y =
�

ribi.
If ri is non negative for all i then y ∈ cone{bi} ⊆ cone(B). If not assume without loss of

generality that r1 is the smallest coefficient (thus r1 < 0). Then we can write

y = |r1|(−
�

bi) +
d�

i=2

(ri + |r1|)bi

This finishes the problem because ri + |r1| ≥ r1 + |r1| = 0 and the postive combinations

of elements of the cone is in the cone.

We proceed to show the interior Cartheodory theorem. We can assume again that the

interior point we are taking is equal to 0, translating P . Let v1, v2, . . . , vt be the vertices
of P . The fact that 0 is interior yields that cone{vi} = Rd by lemma 1. Now the set

{vi} contains a basis of Rd, because R = cone{vi} ⊆ spanvi. Assume without loss of

generality that B = {v1, v2, . . . vd} is a basis. Now consider the vector −
�d

i=1 vi. We

know that it is contained in cone{vi}ti=1, so by Caratheodory for cones, there is a subset

A ⊆ {vi}ti=i, such that |A| ≤ d and −
�d

i=1 vi ∈ cone(A). Take B = B∪A and note that

B satisfies the conditions of lemma 2 taking B as the ground basis. Then cone(B) = Rd.

Thus by lemma 1 0 is an interior point of B. Now |B| ≤ |A| + |B| ≤ d + d = 2d, so we

proved what we wanted.

(b) Take the cross polytope, that is P = conv{±ei}, where e1, e2, . . . , ed is the standard

basis of Rd. Thes polyhedron has 2d vertices. and contains the origin in it’s interior. If

we remove some vertex v thenthe intersection of the half plane v · x > 0 and the new

polyhedron P � is empty (this is obvious, because v = ±ei for some i and it is the only

vector having that sign on coordinate i). Now 0 is a limit point of v · x > 0 (put a

sequence that converges to 0 and has the same sign as (v)i in the i-th coordinate), thus

0 can’t be an interior point of P �. It follows that 2d can’t be reduced.

(c) I claim that the only polytopes P for which 2d is the lowest bound are the crossed

polytopes with concurrent diagonals, and the only point that fails is the intersection of

the diagonals. This cases can’t be lowered and the proof is the same as in (b) by making

a change of basis (the negative vectors of the basis may be multiplied by a positive

scalar).

To prove the result note that −
�

bi of lemma 2 can be replaced by any point of the form

u = −
�

λibi where λi > 0 for all i (the proof is the same, take a large enough positive

multiple of u and fix the coefficients with the basis). Assume that P is a polytope for

which the 2d can’t be reduced for the point x. We may translate P and assume that

x = 0. Take a basis of vectors with vertices in P , and pick a set A as in (a). Then

5



it must be that |A| = d also A is a basis of R because otherwise it lies in a d − 1

dimensional subspace and by caratheodory we can choose d − 1 of those vectors that

contain uB = −
�

bi. Note that the coefficients of UB in the cone are all positive or

we can remove the vector with zero coefficient. The same happens with any point in

the interior of cone(−B) by the extension of the lemma 2. Thus cone(−B) ⊆ cone(A).

Now we can reverse the roles of A and B, in the previous argument and we get that

cone(−A) ⊆ coneB. But cone(−A) = −cone(A) for any finite set of vectors A, thus

we conclude that cone(A) = cone(−B). Now we claim that A is the same as −B up

to multiplication by positive scalars. If not, then some a ∈ A is equal to
�

λibi with
λi ≤ 0 and two non zero coefficients. Assume WLOG that they are λ1 and λ2. Then

there are vectors u3, u4, . . . , ud in A such that the coefficient of bi is negative for ui but
then, a+

�
ui is a positive combination of −B thus we could reduce one vector.

Now it remains to show that there are no more vertices in P . If there is another vertex v
it can’t be in cone(B) neither in cone(−B) (otherwise we reduce, because a line contains

at most two vertices, so it is not a multiple of an element of the basis). Thus v =
�

aibi
where min ai < 0 < max ai. Assume WLOG that a1 < 0 < a2. Then cone(((A ∪

B)\{b2, a1b1})∪{v}) = Rd where a1b1 is the multiple of b1 in A, because we can multiply

v by a large enough constant and fix the coefficients with the rest of the basis. We are

done.

6. (a) We will use the descriptions of P and Q as H- polytopes. Assume that A,B are matrices

and p, q are vectors such that P = {x |Ax ≤ p} and Q = {x |Bx ≤ q}. Then P ∩ Q =

{x |Ax ≤ b andBx ≤ q}. And this is just a bigger intersection of half subspaces. So we

know that P ∩Q is a polyhedron. Now P ∩Q ⊆ P and since P is a polytope, we have

that P is bounded and so is P ∩Q. Thus P ∩Q is a bounded H- polyhedron or, in other

words, a polytope.

(b) Let p1, p2, pk be the vertices of P and let q1, q2, . . . , qs be the vertices of Q. We claim

that the set P+Q = conv{pi+qj | i ∈ [k] and j ∈ [s]}. That the convex hull is contained in

P+Q is obvious form the definition. We have to show the other direction. Let x ∈ P+Q
and let p ∈ P and q ∈ Q be such that x = p+ q. Now let λ1, λ2, . . . , λk be non negative

reals such that
�

λi = 1, p =
�

λipi and let µ1, µ2, . . . , µs be non negative such that�
µi = 1 and q =

�
µiqi. Note that

�
i

�
j λiµj =

�
i λi

�
j µj = 1 and λiµj ≥ 0 for

all pairs i, j. The following computation shows that x ∈ conv{pi+qj | i ∈ [k] and j ∈ [s]}
and finishes the problem:

�

i

�

j

λiµj(pi + qj) =

�

i

λi




�

j

µj



 pi +
�

j

µj

�
�

i

λi

�
qj

=

�

i

λipi +
�

j

µjqj

= p+ q = x

(c) Let p1, p2, pk be the vertices of P and let q1, q2, . . . , qs be the vertices of Q. We claim

that the set P ×Q = conv{(pi, qj) | i ∈ [k] and j ∈ [s]}. That the convex hull is contained

in P × Q is obvious form the definition. We have to show the other direction. Let

x ∈ P ×Q and let p ∈ P and q ∈ Q be such that x = (p, q). Now let λ1, λ2, . . . , λk be
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