
Using just the two n−1 agonal faces as in the first construction, we can get polytopes from n+1→ 2n
faces, and since the two vertexes will add 2n−4 faces more, in this way you can construct polytopes
with 3n − 3 → 4n − 4 faces. Since V = 2n , the inequalities V ≤ 2F − 4 and F ≤ 2V − 4, imply
n+2 ≤ F ≤ 4n−4, so we have constructed polytopes for all the posible pairs (V, F ) when V is even.

The case V = 2n − 1 is almost the same. From the construction of an n-agonal and an n − 1
agonal faces you will get polytopes with n+2→ 2n+1 faces. If you consider two n−1 agonal faces
an a vertex in the top, you will get 2n→ 3n− 1 faces; and if you take a n− 1 agonal face, a n− 2
agonal face and two vertexes (one over one below), you can get polytopes with 3n − 4 → 4n − 6
faces. In this case the inequalities implies n + 2 ≤ F ≤ 4n − 6, so all the pair (V, F ), with V odd
can be constructed.

2)We present two polytopes that shares the same number of vertixes, faces and edges but are
combinatorially different:

Both polytopes has 7 vertexes, 7 faces, and 12 edges. However the polytope in the left has a face
with 6 edges while the polytope in the right doesn’t have any face of this type.

3)Lets prove that convex{+1,−1}d = {x ∈ R
d : −1 ≤ xi ≤ 1, for all 1 ≤ i ≤ d}:

I will check first convex{+1,−1}d ⊆ {x ∈ R
d : −1 ≤ (x)i ≤ 1, for all 1 ≤ i ≤ d}: Let

v1, v2, ..., v2d be any order of the points in the set {+1,−1}d. Let x ∈ convex{+1,−1}d, so we
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write x = λ1v1 + λ2v2 + ... + λ2dv2d , where λ1 + λ2 + ... + λ2d = 1, and λj ≥ 0 for all j. Ob-
serve that (x)i = (λ1v1 + λ2v2 + ... + λ2dv2d)i = λ1(v1)i + λ2(v2)i + ... + λ2d(v2d)i; we know that
(vk)i ∈ {+1,−1} for 1 ≤ k ≤ 2d, so its also true that −1 ≤ (vk)i ≤ 1. Since λk ≥ 0, using
the previous inequality, we get −λk ≤ λk(vk)i ≤ λk, for all k. Addindg this inequalities we get
−(λ1 +λ2 + ...+λ2d) ≤ (x)i ≤ (λ1 +λ2 + ...+λ2d)⇒ −1 ≤ (x)i ≤ 1. Since the previous result holds
for 1 ≤ i ≤ d, we conclude x ∈ {x ∈ R

d : −1 ≤ (x)i ≤ 1, for all 1 ≤ i ≤ d}, so we have completed
this part of the proof.

Now lets check {x ∈ R
d : −1 ≤ (x)i ≤ 1, for all 1 ≤ i ≤ d} ⊆ convex{+1,−1}d:

Apply induction on d. The base case d = 1 is obvious, since [−1, +1] = convex{+1,−1}.
Assume that the result its true for d − 1. Let v1, v2, ..., v2d−1 be any order of the points in
the set {+1,−1}d−1, now define u1 = (v1,−1), u2 = (v2,−1), ..., u2d−1 = (v2d−1 ,−1), and w1 =
(v1, +1), w2 = (v2, +1), ..., w2d−1 = (v2d−1 , +1), so u1, u2, ..., u2d−1 , w1, w2..., w2d−1 are all the points
of the set {+1,−1}d. Let x ∈ {x ∈ R

d : −1 ≤ (x)i ≤ 1, for all 1 ≤ i ≤ d}, then x = (x̂, xd),
where x̂ ∈ {x ∈ R

d−1 : −1 ≤ (x)i ≤ 1}, and xd ∈ [−1, +1]. By induction hypothesis x̂ ∈
convex{+1,−1}d−1 so x̂ = λ1v1 + λ2v2... + λ2d−1v2d−1 , a convex combination. Since xd ∈ [−1, +1],
we know that xd = −1µ + 1λ a convex combination. Now observe that (λkµ)uk + (λkλ)wk =
λk(µ(vk,−1) + λ(vk, +1)) = λk(vk, xd), for 1 ≤ k ≤ 2d−1, so we get that:

(λ1µ)u1 + (λ1λ)w1 + (λ2µ)u2 + (λ2λ)w2 + ... + (λ2d−1µ)u2d−1 + (λ2d−1λ)w2d−1

= λ1(v1, xd) + λ2(v2, xd) + ... + λ2d−1(v2d−1 , xd)
=

�
λ1v1 + λ2v2... + λ2d−1v2d−1 , (λ1 + λ2 + ... + λ2d−1)xd

�

= (x̂, xd) = x.

Since (λ1µ)+(λ1λ)+(λ2µ)+(λ2λ)+...+(λ2d−1µ)+(λ2d−1λ) = (µ+λ)(λ1+λ2+...+λ2d−1) = 1,and
all of them are nonnegative, we conclude that x ∈ convex{+1,−1}d. This complete the proof.

4)The given set of inequalities that define the polygon can be written in the form:
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
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



In order to identify for which values of x2 there is a value of x1 that satisfies all the system ,
we can start by identifiying for which values of x2 there is a value of x1 that satisfies each pair of
inequalities (taking one from the left column and one from the right column). In the following table
I summarize the information obtained by solving each pair of inequalities:

A B C D

X x2 ≥ 3
2 x2 ≥ 4

5 x2 ≤ 17
2 x2 ≥ 6

13

Y x2 ≥ 5
4 x2 ≥ −4 x2 ≤ 25

6 x2 ≥ −18

Z x2 ≥ 1 2 ≥ 11
2 x2 ≤ 4 6 ≥ 11

Then we conclude that there is x1 that satisfies all the inequalities simultaneously if and only if
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