homework four (due wed. oct. 20 at midnight)
Instructions. As last time. Please work together and write separately. State who you worked with in each problem. E-mail your hw to discretegeometry@gmail.com. $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ gives you 10%.

1. (Triangulations of $\Delta_{n-1} \times \Delta_{1}$) Describe all the triangulations of the product of simplices $\Delta_{n-1} \times \Delta_{1}$. Are they all regular?
2. (Eulerian numbers, part 1.) Prove that for any positive integer d one can write

$$
\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, 1) z^{0}+\cdots+A(d, d) z^{d-1}}{(1-z)^{d+1}}
$$

where $A(d, 0), A(d, 1), \ldots, A(d, d)$ are positive integers satisfying, for all $1 \leq k \leq d$.

$$
A(d, k)=(d-k+1) A(d-1, k-1)+k A(d-1, k)
$$

(We write $A(d, k)=0$ if $k \leq 0$ or if $k \geq d+1$.)
3. (Eulerian numbers, part 2.) Let $E(d, k)$ be the number of permutations of [d] having exactly $k-1$ descents. Prove that, for all $1 \leq k \leq d$,

$$
E(d, k)=(d-k+1) E(d-1, k-1)+k E(d-1, k)
$$

Conclude that $E(d, k)=A(d, k)$ for all integers $1 \leq k \leq d$.
Also conclude that $A(d, k)=A(d, d+1-k)$ for all integers $1 \leq k \leq d$.
(We write $E(d, k)=0$ if $k \leq 0$ or if $k \geq d+1$.)
4. (Generating functions of polynomials.) Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and $d \in \mathbb{N}$. Write

$$
\sum_{t \geq 0} f(t) z^{t}=\frac{g(z)}{(1-z)^{d+1}}
$$

Prove that the following are equivalent:

- f is a polynomial of degree d
- g is a polynomial of degree at most d such that $g(1) \neq 0$.

5. (Ehrhart computations) Compute the Ehrhart polynomial and the Ehrhart series of the polytope $P=\operatorname{conv}\{(0,0,0),(0,0,3),(1,0,0),(1,1,0),(2,1,0),(2,0,1)\} \subset \mathbb{R}^{3}$.
6. (The staircase triangulation of $\Delta_{m-1} \times \Delta_{n-1}$). Let e_{i} and f_{j} be the standard unit vectors in \mathbb{R}^{m} and \mathbb{R}^{n}, respectively, and let $\mathrm{v}_{\mathrm{ij}}=\mathrm{e}_{\mathrm{i}} \times \mathrm{f}_{\mathrm{j}} \in \mathbb{R}^{\mathrm{m}+\mathrm{n}}$. Let

$$
\Delta_{m-1} \times \Delta_{n-1}=\operatorname{conv}\left\{\mathrm{v}_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Now consider the rectangular grid with corners $(1,1)$ to (m, n). A staircase is a path from $(1,1)$ to (m, n) that only steps north or east along edges of the grid. For such a staircase S define a polytope

$$
P_{S}=\operatorname{conv}\left\{\mathrm{v}_{i j}:(i, j) \text { is a vertex of } S\right\}
$$

Prove that, as S ranges over all $\binom{m+n-2}{m-1}$ staircases, the polytopes P_{S} form a triangulation of $\Delta_{m-1} \times \Delta_{n-1}$.
7. In at most half a page, tell me your thoughts about the project. What topics are you considering? Are you interested in trying to solve an open problem / surveying the current state of a topic / understanding an interesting result / writing some useful software? Do you already have a partner? Are you interested in a partner in Bogotá / San Francisco?
(The only wrong answer is "I don't know.")

