homework three (due wed. oct. 6 at midnight)
Instructions. As last time. Please work together and write separately. State who you worked with in each problem. E-mail your hw to discretegeometry@gmail.com. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ gives you 10%.

1. (How neighborly can you be?) If a d-dimensional polytope is $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$ - neighborly, prove that it is a simplex.
(Recall that a polytope is k-neighborly if any set of k vertices forms a face.)
2. (The spanning tree polytope.) Let G be a graph and $S T(G)$ its spanning tree polytope.
(a) Prove that χ_{T} is a vertex of $S T(G)$ for every spanning tree T of G.
(b) Prove that two vertices $\chi_{T}, \chi_{T}^{\prime}$ are adjacent in $S T(G)$ if and only if there exist edges $e \in T-T^{\prime}$ and $f \in T^{\prime}-T$ such that $T^{\prime}=T-e \cup f$.
(c) Use (b) to prove that the diameter of $S T(G)$ is less than the number of vertices of G.
3. (Reducing Hirsch's conjecture to the d-step conjecture, part 1.) Let P be a d-polytope with n facets, and assume $n<2 d$.
(a) Prove that any two vertices lie in a common facet.
(b) Use (a) to conclude that $\Delta(d, n) \leq \Delta(d-1, n-1)$.
(c) Use (b) and induction to conclude that $\Delta(d, n) \leq \Delta(n-d, 2(n-d))$.
4. (Reducing Hirsch's conjecture to the d-step conjecture, part 2.) Let P be a d-polytope with n facets, and assume $n>2 d$.
(a) Prove that any two vertices lie away from a common facet.
(b) Use (a) to conclude that $\Delta(d, n) \leq \Delta(d+1, n+1)$.
(c) Use (b) and induction to conclude that $\Delta(d, n) \leq \Delta(n-d, 2(n-d))$.
5. (A linear programming example.) A heterosexual-only (!) online dating service has n male and n female members. Each member is shown the profiles of the subscribers of the opposite sex, and answers the questionnaire: how much money are you willing to pay, or how much money must we pay you, to date each member? The goal of the agency is to arrange n (disjoint) dates and make the largest profit possible.
Phrase this as a linear programming question. Find the V-description and the H-description of the relevant polytope.
6. (Diameters of graphs of polytopes.) Find the diameters of the graphs of:
(a) the simplex Δ_{d-1},
(b) the cube C_{d},
(c) the crosspolytope \diamond_{d},
(d) the dodecahedron, and
(e) the icosahedron.

Verify that the Hirsch conjecture holds for all of them.

