homework two (due wed. sep. 22 at midnight)
Instructions. As last time. Please work together and write separately. State who you worked with in each problem. E-mail your hw to discretegeometry@gmail.com. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ gives you 10%.

1. (Putting polytopes in a positive orthant.) Prove that for every polytope P one can find an integer m and an affine subspace $A \subset \mathbb{R}^{m}$ such that P is affinely isomorphic to $A \cap \mathbb{R}_{\geq 0}^{m}$.
2. (3-polytopes with few edges) Describe all the possible combinatorial types of 3-polytopes with at most 9 edges. Which pairs of types are polar to each other?
3. (f-polynomials of prisms and products)
(a) Find the f-polynomial of the pyramid $\operatorname{pyr}(P)$ over a polytope P in terms of the f polynomial of P.
(b) Find the f-polynomial of the product $P \times Q$ of two polytopes P and Q in terms of the f-polynomials of P and Q.
4. (Faces of permutahedra) Prove that the k-dimensional faces of the permutahedron Π_{n-1} are in bijection with the ordered partitions of $[n]$ into $n-k$ parts; that is, the ways of writing the set $[n]:=\{1, \ldots, n\}$ as an ordered, pairwise disjoint union $[n]=A_{1} \cup \cdots \cup A_{k}$ of non-empty subsets of $[n]$.
5. (Shuffling flags) A flag of faces of a d-polytope P is a collection $\mathcal{F}=(F(-1), F(0), \ldots, F(d))$ of faces of P such that $\emptyset=F(-1) \subset F(0) \subset \cdots \subset F(d)=P$ and $\operatorname{dim} F(i)=i$ for $0 \leq i \leq d$. Let Flags (P) be the set of such flags.
Given a flag of faces $\mathcal{F} \in \operatorname{Flags}(P)$, define $T \mathcal{F}=(T F(-1), T F(0), \ldots, T F(d))$ recursively by $T F(-1)=\emptyset, T F(d)=P$ and, for each $i \geq 0, T F(i)$ is the unique i-dimensional face other than $F(i)$ which contains $T F(i-1)$ and is contained in $F(i+1)$.
(a) Prove that T is a bijection from Flags (P) to itself. Construct T^{-1} explicitly.
(b) Prove that if $0 \leq r<s \leq d$ then $T^{r} \mathcal{F}(k) \neq T^{s} \mathcal{F}(k)$ for all k with $0 \leq k \leq d-1$.
(c) (Open problem - extra credit.) What else can you say about T ?
6. (Many different 0-1 polytopes) A 0-1 polytope is one such that every coordinate of every vertex equals 0 or 1 . Let $f(d)$ be the number of combinatorial types of d-dimensional $0-1$ polytopes.
(a) Prove that $2^{2^{d-2}}<f(d)<2^{2^{d}}$.
(b) (Open problem - extra credit.) Can you improve this bound significantly?

As always, I am happy to give you hints on any of the problems, particularly on 5 and 6 . In fact, here is a hint for $6(\mathrm{a})$:
(Consider the set S of $0-1$ polytopes in \mathbb{R}^{d} which contain $(0,0, \ldots, 0,0),(1,1, \ldots, 1,0)$ and $\left(a_{1}, \ldots, a_{d-1}, 1\right)$ for all $a_{i} \in\{0,1\}$, and which do not contain $(1,0, \ldots, 0,0)$ and $(0,1, \ldots, 1,0)$. How many polytopes are in the set S ? If you partition S into combinatorial equivalence classes, how large can a class be?)

