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homework two (due wed. sep. 22 at midnight)

Instructions. As last time. Please work together and write separately. State who you worked with

in each problem. E-mail your hw to discretegeometry@gmail.com. LATEX gives you 10%.

1. (Putting polytopes in a positive orthant.) Prove that for every polytope P one can find an

integer m and an affine subspace A ⊂ Rm such that P is affinely isomorphic to A ∩ Rm
≥0.

2. (3-polytopes with few edges) Describe all the possible combinatorial types of 3-polytopes with

at most 9 edges. Which pairs of types are polar to each other?

3. (f -polynomials of prisms and products)

(a) Find the f -polynomial of the pyramid pyr(P ) over a polytope P in terms of the f -

polynomial of P .

(b) Find the f -polynomial of the product P ×Q of two polytopes P and Q in terms of the

f -polynomials of P and Q.

4. (Faces of permutahedra) Prove that the k-dimensional faces of the permutahedron Πn−1 are

in bijection with the ordered partitions of [n] into n−k parts; that is, the ways of writing the

set [n] := {1, . . . , n} as an ordered, pairwise disjoint union [n] = A1 ∪ · · · ∪Ak of non-empty

subsets of [n].

5. (Shuffling flags) A flag of faces of a d-polytope P is a collection F = (F (−1), F (0), . . . , F (d))

of faces of P such that ∅ = F (−1) ⊂ F (0) ⊂ · · · ⊂ F (d) = P and dimF (i) = i for 0 ≤ i ≤ d.

Let Flags(P ) be the set of such flags.

Given a flag of faces F ∈ Flags(P ), define TF = (TF (−1), TF (0), . . . , TF (d)) recursively by

TF (−1) = ∅, TF (d) = P and, for each i ≥ 0, TF (i) is the unique i-dimensional face other

than F (i) which contains TF (i− 1) and is contained in F (i + 1).

(a) Prove that T is a bijection from Flags(P ) to itself. Construct T−1 explicitly.

(b) Prove that if 0 ≤ r < s ≤ d then T rF(k) 6= T sF(k) for all k with 0 ≤ k ≤ d− 1.

(c) (Open problem – extra credit.) What else can you say about T?

6. (Many different 0-1 polytopes) A 0-1 polytope is one such that every coordinate of every vertex

equals 0 or 1. Let f(d) be the number of combinatorial types of d-dimensional 0-1 polytopes.

(a) Prove that 22
d−2

< f(d) < 22
d

.

(b) (Open problem - extra credit.) Can you improve this bound significantly?

As always, I am happy to give you hints on any of the problems, particularly on 5 and 6. In fact,

here is a hint for 6(a):

(Consider the set S of 0-1 polytopes in Rd which contain (0, 0, . . . , 0, 0), (1, 1, . . . , 1, 0) and (a1, . . . , ad−1, 1)

for all ai ∈ {0, 1}, and which do not contain (1, 0, . . . , 0, 0) and (0, 1, . . . , 1, 0). How many polytopes are in

the set S? If you partition S into combinatorial equivalence classes, how large can a class be?)


