homework one (due mon. sep. 6 (sf) or wed. sep. 8 (bog))
Note. You are strongly encouraged to work together on the homework, but you must state who you worked with. You must also write your solutions independently and in your own words. You may turn in your homework at the end of the class, or by email in a single .pdf file before midnight at discretegeometry@gmail.com. (No exceptions.)

Grading. The homework is graded out of 50 points. Each problem is worth 10 points. (I know...)
ATEX incentive. You will receive a 10% increase on your grade if you turn in your homework as a .pdf file produced in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. (Other software doesn't count, sorry.) I reserve the right to ask you to type up your subsequent homework in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ if I cannot understand your handwriting.

1. (f-vectors of 3-polytopes) Let v, e, and f be positive integers. Prove that there exists a polytope with v vertices, e edges, and f faces if and only if:

$$
v-e+f=2, \quad v \leq 2 f-4, \text { and } \quad f \leq 2 v-4
$$

You may assume Euler's formula ($v-e+f=2$); we will prove it later in class.
2. (Polytopes with the same f-vector.) Do there exist two 3 -polytopes which are combinatorially different, but have the same number of vertices, edges, and faces? ${ }^{1}$
3. (H and V descriptions of the cube) Prove that our two descriptions of the d-cube C_{d} coincide:

$$
\operatorname{conv}\{+1,-1\}^{d}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid-1 \leq x_{i} \leq 1 \text { for all } 1 \leq i \leq d\right\}
$$

4. (An example of Fourier-Motzkin elimination) Let P be the polygon described by the inequalities:

$$
\left[\begin{array}{rr}
-1 & -4 \\
-2 & -1 \\
1 & -2 \\
1 & 0 \\
2 & 1 \\
-2 & 6 \\
-6 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{r}
-9 \\
-4 \\
0 \\
4 \\
11 \\
17 \\
-6
\end{array}\right]
$$

Use Fourier-Motzkin elimination on P to eliminate the variable x_{1}. Give the simplest possible description of $\operatorname{proj}_{1}(P)$.
5. (An "interior" Carathéodory theorem.) Let P be a d-polytope and x be a point in its interior.
(a) Prove that there exists a subset V of at most $2 d$ vertices of P such that x is in the interior of the convex hull of V.
(b) Prove that the number $2 d$ cannot be decreased in general.
(c) Characterize those P and x for which $2 d$ points are needed in V.
6. (Operations on polytopes.)
(a) If $P, Q \subset \mathbb{R}^{d}$ are polytopes, prove that $P \cap Q \subset \mathbb{R}^{d}$ is a polytope.
(b) If $P, Q \subset \mathbb{R}^{d}$ are polytopes, prove that $P+Q \subset \mathbb{R}^{d}$ is a polytope.
(c) If $P \subset \mathbb{R}^{d}$ and $Q \subset \mathbb{R}^{e}$ are polytopes, prove that $P \times Q \subset \mathbb{R}^{d+e}$ is a polytope.

[^0]
[^0]: ${ }^{1}$ (Note. We say P and Q are combinatorially the same polytope if they have the same vertex / edge / face incidence relations. In other words, their vertices can be numbered p_{1}, \ldots, p_{n} and q_{1}, \ldots, q_{n}, respectively, so that $\left\{p_{a_{1}}, \ldots, p_{a_{k}}\right\}$ is a face of P if and only if $\left\{q_{a_{1}}, \ldots, q_{a_{k}}\right\}$ is a face of Q for any subset $\left\{a_{1}, \ldots, a_{k}\right\} \subseteq\{1, \ldots, n\}$.)

