
MATH 850 : HOMEWORK #4 5

then by using the commutativity of 2-refinements, we can see these are equivalent to all 6 orderings. In general all
n-refinements of intervals need to have commutative factors.

Having established that, let P be a hereditary family such that H (P ) is an incidence Hopf algebra with a re-
duced congruence relation with reduced commutativity as defined above, and let p ∈ P . If p is an interval of length
0, then S ○ S (p) = S (p) = p. If the length of p is greater than zero, then

S ○ S (p) = S

���� �
0p=h0<�<hn=1p

n≥1
(−1)n [h0, h1] ×�× [hn−1, hn]

����
= �

0p=h0<�<hn=1p
n≥1

(−1)n S ([hn, hn−1] ×�× [h1, h0])
= �

0p=h0<�<hn=1p
n≥1

(−1)n S ([hn, hn−1])�S ([h1, h0])
We need to show that the coefficients for an arbitrary refinement [g0, g1] × � × [gm−1, gm] for m ≥ 2, are all

zero, and to do this we only need to consider the summands which contain [h0, h1] × � × [hn−1, hn] of which[g0, g1] × � × [gm−1, gm] is a further refinement (n ≤ m). This means the elements {h1, . . . , hn−1} are a subset of{g1, . . . , gm−1}. For instance, consider
[g0, g1] ×�× [gm−1, gm] = [A,B] × [B,C] × [C,D] .

The super-refinements [h0, h1] ×� × [hn−1, hn] we need to consider delete either the B, the C, none, or both. The
four possibilities are listed in the table below:

S (H) coeff of S (H) coeff of [A,B] × [B,C] × [C,D] in S (H)
S ([A,D]) (−1)1 (−1)3
S ([A,C] × [C,D]) (−1)2 (−1)3
S ([A,B] × [B,D]) (−1)2 (−1)3
S ([A,B] × [B,C] × [C,D]) (−1)3 (−1)3

The coefficients of S ([h0, h1] ×�× [hn−1, hn]) within S (p) as well as the coefficients of [A,B] × [B,C] × [C,D]
within S ([h0, h1] ×�× [hn−1, hn]) which need to be considered are also listed. These actually correspond to the
four underlined terms in equation 1 in order.

To write this more generally, note that if the set of elements U removed from {g1, . . . , gm−1} has size �U �, then
the first coefficient is (−1)�U �+1. The second coefficient is always (−1)m. This gives us the equation

S ○ S (p) = �
0p=g0<�<gm=1p

m≥1
�

U⊆{g1,...,gm−1}
�(−1)�U �+1 (−1)m [g0, g1] ×�× [gm−1, gm]�

= �
0p=g0<�<gm=1p

m≥1

�
�(−1)m+1

�
� �
U⊆{g1,...,gm−1}

(−1)�U ��� [g0, g1] ×�× [gm−1, gm] .
�
�

for which if

�
U⊆U⊆{g1,...,gm−1}

(−1)�U � = �������
1 m > 1
0 m = 1

we are done. Now if m = 1, then we sum over U ⊆ � , for which the only summand is (−1)0 = 1. Now if m ≥ 1,
then we sum over subsets of the nonempty set {g1, . . . , gm−1}. There are 2m−1 of these of which for half of them�U � is odd and �U � is even (you can get a bijection by “toggling” the inclusion of g1 to switch from evens to odds
and vice-versa). Since we have an equal number of odds and evens, the sum is equal to zero. Therefore the only
summand that does not ultimately cancel out out the one for which m = 1, and thus S ○ S (p) = p.

Problem 4

(a) To show it is a Hopf algebra, we must show it is an algebra (associative, unital), that it is a coalgebra
(coassociative, counital), that the algebra and coalgebra operations are compatible (via showing that ∆
and � are algebra homomorphisms), and that the antipode exists.
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● Associativity. Let x = x1 ⊗�⊗ xm, y = y1 ⊗�⊗ yn, and z = z1 ⊗�⊗ zp:

m (x,m (y, z)) = x1 ⊗�⊗ xm ⊗ y1 ⊗�⊗ yn ⊗ z1 ⊗�⊗ zp =m (m (x, y) , z)
● Unital:

u (1) ⋅ x = 1 ⋅ x = x = x ⋅ 1 = x ⋅ u (1)
● Coassociativity:

(∆⊗ Id)∆x = (∆⊗ Id) �
S⊆[n]

x�S ⊗ x�[n]�S
= �

T⊆S �S⊆[n]x�T ⊗ x�S�T ⊗ x�[n]�S
= �

A�B�C=[n]
x�A ⊗ x�B ⊗ x�C

= �
T⊆S �S⊆[n]x�[n]�S ⊗ x�T ⊗ x�S�T

= (Id⊗∆) �
S⊆[n]

x�[n]�S ⊗ x�S
= (Id⊗∆)∆x

● Counital:

(� ∗ Id) (x) = �
S⊆[n]

� (x�S)x�[n]�S
= � (x��)x�[n]= x

and similarly Id ∗ � = Id.● ∆ is an algebra homomorphism. Let x = x1 ⊗�⊗ xm and y = y1 ⊗�⊗ yn.

∆ (xy) = �
S⊆[n+m]

(xy) �S ⊗ (xy) �[n+m]�S
= �

S⊆[n+m]
�x�S∩[n] ⋅ y�S∩[n]C−n�⊗ �x�[n]∩SC ⋅ y�([n+m]�S)∩[n]C−n�

= �
S⊆[m] �T⊆[n] (x�S ⋅ y�T )⊗ �x�[m]�S ⋅ y�[n]�T �

= �
S⊆[m] �T⊆[n] �x�S ⊗ x�[m]�S� �y�T ⊗ y�[n]�T �

= �
� �S⊆[m] �x�S ⊗ x�[m]�S���

�
� �T⊆[n] �y�T ⊗ y�[n]�T ���

= ∆x∆y

● � is an algebra homomorphism. Let x and y be as before.

� (xy) = � (x1 ⊗�⊗ xm ⊗ y1 ⊗�⊗ yn)
= �������

1 n =m = 0
0 otherwise

= � (x) � (y)
So T (V ) is in fact a bialgebra.● The antipode in this case is surprisingly simple. First, since 1 = u� (1) = (S ∗ Id)1 = S (1) ⋅ 1, then
S (1) = 1. Let x = x1 be any pure 1-tensor, so that

0 = u� (x) = (S ∗ Id) (x) = S (x)1 + S (1)x
implying that

S (x) = −x.
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Because S is an antimorphism, and because any m-tensor x = x1 ⊗�⊗xm is the product x1 . . . xm

of m 1-tensors,

S (x) = S (x1 ⊗�⊗ xm)= S (x1�xm)= S (xm)�S (x1)= (−xm)� (−x1)= (−1)m (xm ⊗�⊗ x1)
(b) EXTERIOR ALGEBRA:

For � (V ) = T (V ) �I to be a Hopf algebra descended from T (V ), the ideal I must be a Hopf ideal, and
this is only true if the characteristic of the base field is 2. Remember, I is the ideal generated by all
x⊗ x for x ∈ V .

To show that the ideal I is also a co-ideal, we must show that � (I) = 0 and ∆ (I) ⊂ I⊗T (V )+T (V )⊗I.
The fact that � (I) = 0 is immediate from the fact that I is generated by 2-tensors, so it cannot contain
any 0-tensors. For L,R ∈ T (V ) and x ∈ V let

L ⋅ x⊗ x ⋅R ∈ I
represent an arbitrary element of I. Then

∆ (L ⋅ x⊗ x ⋅R) = ∆L∆ (x⊗ x)∆R

= ∆L

���(x⊗ x)⊗ 1 + 2x⊗ x���������������=0
+1⊗ (x⊗ x)���∆R

= ∆L ((x⊗ x)⊗ 1 + 1⊗ (x⊗ x))∆R

∈ I ⊗ T (V ) + T (V )⊗ I.

To show that S (I) ⊆ I, again consider arbitrary L⊗ x⊗ x⊗R ∈ I. Then

S (L ⋅ x⊗ x ⋅R) = S (R) ⋅ S (x⊗ x) ⋅ S (L)
= (−1)2 S (R) ⋅ x⊗ x ⋅ S (L)
∈ I.

So I is indeed a Hopf ideal and � (V ) is a Hopf algebra.

SYMMETRIC ALGEBRA:
For S (V ) = T (V ) �J is also a Hopf algebra where J is the ideal generated by x⊗y−y⊗x for all x, y ∈ V .
J is a coideal because

� (I) = 0
since J is generated by 2-tensors and so cannot contain any 0-tensors, and also because for any arbitrary
element L ⋅ (x⊗ y − y ⊗ x) ⋅R ∈ J

∆ (L ⋅ (x⊗ y − y ⊗ x) ⋅R) = ∆L∆ (x⊗ y − y ⊗ x)∆R

= ∆L ([(x⊗ y)⊗ 1 + x⊗ y + y ⊗ x + 1⊗ (x⊗ y)] − [(y ⊗ x)⊗ 1 + y ⊗ x + x⊗ y + 1⊗ (y ⊗ x)])∆R

= ∆L [(x⊗ y − y ⊗ x)⊗ 1]∆R +∆L [1⊗ (x⊗ y − y ⊗ x)]∆R

∈ J ⊗ T (V ) + T (V )⊗ J.

It is a Hopf ideal because again for any L ⋅ (x⊗ y − y ⊗ x) ⋅R ∈ J ,

S (L ⋅ (x⊗ y − y ⊗ x) ⋅R) = S (R) ⋅ S (x⊗ y − y ⊗ x) ⋅ S (L)
= S (R) ⋅ (Sy ⊗ Sx − Sx⊗ Sy) ⋅ S (L)
= S (R) ⋅ (y ⊗ x − x⊗ y) ⋅ S (L)
∈ J.


