(a) To show it is a Hopf algebra, we must show it is an algebra (associative, unital), that it is a coalgebra (coassociative, counital), that the algebra and coalgebra operations are compatible (via showing that Δ and ϵ are algebra homomorphisms), and that the antipode exists.

- Associativity. Let $x=x_{1} \otimes \cdots \otimes x_{m}, y=y_{1} \otimes \cdots \otimes y_{n}$, and $z=z_{1} \otimes \cdots \otimes z_{p}$:

$$
m(x, m(y, z))=x_{1} \otimes \cdots \otimes x_{m} \otimes y_{1} \otimes \cdots \otimes y_{n} \otimes z_{1} \otimes \cdots \otimes z_{p}=m(m(x, y), z)
$$

- Unital:

$$
u(1) \cdot x=1 \cdot x=x=x \cdot 1=x \cdot u(1)
$$

- Coassociativity:

$$
\begin{aligned}
(\Delta \otimes I d) \Delta x & =\left.\left.(\Delta \otimes I d) \sum_{S \subseteq[n]} x\right|_{S} \otimes x\right|_{[n] \backslash S} \\
& =\left.\left.\left.\sum_{T \subseteq S} \sum_{S \subseteq[n]} x\right|_{T} \otimes x\right|_{S \backslash T} \otimes x\right|_{[n] \backslash S} \\
& =\left.\left.\left.\sum_{A \sqcup B \sqcup C=[n]} x\right|_{A} \otimes x\right|_{B} \otimes x\right|_{C} \\
& =\left.\left.\left.\sum_{T \subseteq S} \sum_{S \subseteq[n]} x\right|_{[n] \backslash S} \otimes x\right|_{T} \otimes x\right|_{S \backslash T} \\
& =\left.\left.(I d \otimes \Delta) \sum_{S \subseteq[n]} x\right|_{[n] \backslash S} \otimes x\right|_{S} \\
& =(I d \otimes \Delta) \Delta x
\end{aligned}
$$

- Counital:

$$
\begin{aligned}
(\epsilon * I d)(x) & =\left.\sum_{S \subseteq[n]} \epsilon\left(\left.x\right|_{S}\right) x\right|_{[n] \backslash S} \\
& =\left.\epsilon\left(\left.x\right|_{\varnothing}\right) x\right|_{[n]} \\
& =x
\end{aligned}
$$

and similarly $I d * \epsilon=I d$.

- Δ is an algebra homomorphism. Let $x=x_{1} \otimes \cdots \otimes x_{m}$ and $y=y_{1} \otimes \cdots \otimes y_{n}$.

$$
\begin{aligned}
\Delta(x y) & =\left.\left.\sum_{S \subseteq[n+m]}(x y)\right|_{S} \otimes(x y)\right|_{[n+m] \backslash S} \\
& =\sum_{S \subseteq[n+m]}\left(\left.\left.x\right|_{S \cap[n]} \cdot y\right|_{S \cap[n]^{C}-n}\right) \otimes\left(\left.\left.x\right|_{[n] \cap S^{C}} \cdot y\right|_{([n+m] \backslash S) \cap[n]^{C}-n}\right) \\
& =\sum_{S \subseteq[m]} \sum_{T \subseteq[n]}\left(\left.\left.x\right|_{S} \cdot y\right|_{T}\right) \otimes\left(\left.\left.x\right|_{[m] \backslash S} \cdot y\right|_{[n] \backslash T}\right) \\
& =\sum_{S \subseteq[m]} \sum_{T \subseteq[n]}\left(\left.\left.x\right|_{S} \otimes x\right|_{[m] \backslash S}\right)\left(\left.\left.y\right|_{T} \otimes y\right|_{[n] \backslash T}\right) \\
& =\left(\sum_{S \subseteq[m]}\left(\left.\left.x\right|_{S} \otimes x\right|_{[m] \backslash S}\right)\right)\left(\sum_{T \subseteq[n]}\left(\left.\left.y\right|_{T} \otimes y\right|_{[n] \backslash T}\right)\right) \\
& =\Delta x \Delta y
\end{aligned}
$$

- ϵ is an algebra homomorphism. Let x and y be as before.

$$
\begin{aligned}
\epsilon(x y) & =\epsilon\left(x_{1} \otimes \cdots \otimes x_{m} \otimes y_{1} \otimes \cdots \otimes y_{n}\right) \\
& = \begin{cases}1 & n=m=0 \\
0 & \text { otherwise }\end{cases} \\
& =\epsilon(x) \epsilon(y)
\end{aligned}
$$

So $T(V)$ is in fact a bialgebra.

- The antipode in this case is surprisingly simple. First, since $1=u \epsilon(1)=(S * I d) 1=S(1) \cdot 1$, then $S(1)=1$. Let $x=x_{1}$ be any pure 1 -tensor, so that

$$
0=u \epsilon(x)=(S * I d)(x)=S(x) 1+S(1) x
$$

implying that

$$
S(x)=-x
$$

Because S is an antimorphism, and because any m-tensor $x=x_{1} \otimes \cdots \otimes x_{m}$ is the product $x_{1} \ldots x_{m}$ of m 1-tensors,

$$
\begin{aligned}
S(x) & =S\left(x_{1} \otimes \cdots \otimes x_{m}\right) \\
& =S\left(x_{1} \cdots x_{m}\right) \\
& =S\left(x_{m}\right) \cdots S\left(x_{1}\right) \\
& =\left(-x_{m}\right) \cdots\left(-x_{1}\right) \\
& =(-1)^{m}\left(x_{m} \otimes \cdots \otimes x_{1}\right)
\end{aligned}
$$

(b) EXTERIOR ALGEBRA:

For $\wedge(V)=T(V) / I$ to be a Hopf algebra descended from $T(V)$, the ideal I must be a Hopf ideal, and this is only true if the characteristic of the base field is 2 . Remember, I is the ideal generated by all $x \otimes x$ for $x \in V$.

To show that the ideal I is also a co-ideal, we must show that $\epsilon(I)=0$ and $\Delta(I) \subset I \otimes T(V)+T(V) \otimes I$. The fact that $\epsilon(I)=0$ is immediate from the fact that I is generated by 2 -tensors, so it cannot contain any 0 -tensors. For $L, R \in T(V)$ and $x \in V$ let

$$
L \cdot x \otimes x \cdot R \in I
$$

represent an arbitrary element of I. Then

$$
\begin{aligned}
\Delta(L \cdot x \otimes x \cdot R) & =\Delta L \Delta(x \otimes x) \Delta R \\
& =\Delta L((x \otimes x) \otimes 1+\underbrace{2 x \otimes x}_{=0}+1 \otimes(x \otimes x)) \Delta R \\
& =\Delta L((x \otimes x) \otimes 1+1 \otimes(x \otimes x)) \Delta R \\
& \in I \otimes T(V)+T(V) \otimes I
\end{aligned}
$$

To show that $S(I) \subseteq I$, again consider arbitrary $L \otimes x \otimes x \otimes R \in I$. Then

$$
\begin{aligned}
S(L \cdot x \otimes x \cdot R) & =S(R) \cdot S(x \otimes x) \cdot S(L) \\
& =(-1)^{2} S(R) \cdot x \otimes x \cdot S(L) \\
& \epsilon I
\end{aligned}
$$

So I is indeed a Hopf ideal and $\wedge(V)$ is a Hopf algebra.

SYMMETRIC ALGEBRA:

For $S(V)=T(V) / J$ is also a Hopf algebra where J is the ideal generated by $x \otimes y-y \otimes x$ for all $x, y \in V$. J is a coideal because

$$
\epsilon(I)=0
$$

since J is generated by 2 -tensors and so cannot contain any 0 -tensors, and also because for any arbitrary element $L \cdot(x \otimes y-y \otimes x) \cdot R \in J$

$$
\begin{aligned}
\Delta(L \cdot(x \otimes y-y \otimes x) \cdot R) & =\Delta L \Delta(x \otimes y-y \otimes x) \Delta R \\
& =\Delta L([(x \otimes y) \otimes 1+x \otimes y+y \otimes x+1 \otimes(x \otimes y)]-[(y \otimes x) \otimes 1+y \otimes x+x \otimes y+1 \otimes(y \otimes x)]) \Delta R \\
& =\Delta L[(x \otimes y-y \otimes x) \otimes 1] \Delta R+\Delta L[1 \otimes(x \otimes y-y \otimes x)] \Delta R \\
& \in J \otimes T(V)+T(V) \otimes J .
\end{aligned}
$$

It is a Hopf ideal because again for any $L \cdot(x \otimes y-y \otimes x) \cdot R \in J$,

$$
\begin{aligned}
S(L \cdot(x \otimes y-y \otimes x) \cdot R) & =S(R) \cdot S(x \otimes y-y \otimes x) \cdot S(L) \\
& =S(R) \cdot(S y \otimes S x-S x \otimes S y) \cdot S(L) \\
& =S(R) \cdot(y \otimes x-x \otimes y) \cdot S(L) \\
& \in J .
\end{aligned}
$$

