3 Antipodes of incidence Hopf algebras have order 2

Notice that $S(S(P))$ is a sum of sequences of the form $\left[0, x_{1}\right] \times\left[x_{1}, x_{2}\right] \ldots \times\left[x_{n-1}, 1\right]$ with some sign. The coefficient of $P=[0,1]$ is $(-1)^{2}=1$. We show that the coefficient of $\left[0, x_{1}\right] \times$ $\left[x_{1}, x_{2}\right] \ldots \times\left[x_{n-1}, 1\right]$ is 0 for $n>1$. In order to get that term, we must refine another subsequence $\left[0, y_{1}\right] \times\left[y_{1}, y_{2}\right] \ldots \times\left[y_{k-1}, 1\right]$. The sign of such refinement is $(-1)^{k+n}$. We say a subsequence is nice if $\left[0, y_{1}\right]=\left[0, x_{1}\right]$. We associate to it the subsequence $\left[0, y_{2}\right] \times\left[y_{2}, y_{3}\right] \ldots \times\left[y_{k-1}, 1\right]$, which has the opposite sign. It is easy to see that this is matching between nice and non-nice subsequences, so all terms cancel.

