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(1) (Exercises on posets)

(a) Prove that the product of two Boolean posets is a Boolean poset.

Proof. Let P1 and P2 be box posets. Then P1 = 2A and P2 = 2B for some

sets A and B.

Suppose |A| = m and |B| = n, and suppose P1 = {a1, a2, . . . , a2m} and

P2 = {b1, b2, . . . , b2n}, where a

i

✓ A and b

j

✓ B. Then,

P1 ⇥ P2 = {(a1, b1), (a1, b2), . . . (a2m , b2n}

and |(P1 ⇥ P2)| = 2m · 2n = 2m+n.

Now define C = 2A]B = {c11, c12, . . . , c2m2n} where cij ✓ A]B and 0  i  m

and 0  j  n, and notice that |C| = 2m+n.

We claim that C ⇠= P1 ⇥ P2. Define f : C ! P1 ⇥ P2 by f(c
ij

) = (a
i

, b

j

).

f is a homomorphism since f((a
i

, b

j

) + (a
k

, b

l

)) = c

i+k j+l

= f(a
i+k

, b

j+l

).

And further we have f is injective since if f(c
ij

) = (a
i

, b

j

) = f(c
kl

) = (a
k

, b

l

),

then c

ij

= c

kl

, i.e., i = k and j = l. And since C and P1 ⇥ P2 have the same

cardinality, f is also bijective.

This shows that P1 ⇥ P2 is a Boolean poset. ⇤

(b) Let a box poset be a finite product of finite chains. Prove that any interval

of a box poset is a box poset.

Proof. (Worked with Cecilia and Servando) Let B = C

i1 ⇥C

i2 ⇥ · · ·⇥C

in be

a box poset, where for all j 2 {1, . . . , n}, C
ij is a chain of length i.

Let [a, b] is an interval in B. Then a = (a
i1 , . . . , ain) and b = (b

i1 , . . . , bin),

where a

ij , bij 2 C

ij .

Since [a, b] is an interval, a
ij  b

ij for each j. Thus [a
ij , bij ] is an interval in

C

ij . But Cij is a chain, so [a
ij , bij ] is also a chain.

Now take e 2 [a, b]. Then e = (e
i1 , . . . , ein), where e

ij 2 C

ij . So now we have

e

ij 2 [a
ij , bij ] for each j. This implies

[a, b] = [a
i1 , bi1 ]⇥ · · ·⇥ [a

in , bin ], i.e. it is a box poset. ⇤

(2) (Computing antipodes)

(a) Compute the antipode of the Hopf algebra of symmetric functions described

in Lectures 14 and 15.

Solution. (Worked with Karen and Seth) Let L
p

be a chain with p edges. We

use Takeuchi’s formula to find the antipode:

S =
X

n�0

(�1)nmn�1
⇡

⌦n�n�1(L
p

)

1



2

Since �(L
p

) =
P

p

i=0 Li

⌦ L

p�1, applying � n� 1 times gives:

�n�1(L
p

) =
X

a1+a2+···+an=p

L

a1 ⌦ L

a2 ⌦ · · ·⌦ L

an

Since ⇡ removes degree 0s, we restrict the above to be 0 < a

i

 p. Thus the

antipode is

S =
X

n�0

(�1)n
X

a1+a2+···+an=p

L

a1 ⇥ L

a2 ⇥ · · ·⇥ L

ap

=
X

n�0

X

a1+a2+···+an=p

(�1)nL
a1 ⇥ L

a2 ⇥ · · ·⇥ L

ap

where 0 < a

i

 p. Notice further since L

a

⇥ L

b

= L

b

⇥ L

a

, we can ”combine

like terms”, thus now we have

S =
X

n�0

X

a1+a2+···+an=p

(�1)n
✓

p

a1, a2, . . . , ap

◆
L

a1 ⇥ L

a2 ⇥ · · ·⇥ L

ap

(b) Compute the antipode of the Hopf algebra of non-commutative symmetric

functions described in Lecture 15.

Solution. (Worked with Karen and Seth) The di↵erence from part a is that

here L

a

⇥ L

b

6= L

b

⇥ L

a

, so we cannot combine like terms. Thus

S =
X

n�0

X

a1+a2+···+an=p

(�1)nL
a1 ⇥ L

a2 ⇥ · · ·⇥ L

ap

(3) (Antipodes of incidence Hopf algebras have order 2)

Prove that the antipode S of any incidence Hopf algebra satisfies S � S = I.

Proof. (worked with Karen) If P has length 0, then S � S(P ) = S(1) = P . If

l(P ) � 1, we computed the antipode in class using Takeuchi formula:

S =
X

n�0

(�1)n
X

0̂=x0<···<xn=1̂

[x0, x1][x1, x2] . . . [xn�1, xn

]

Applying S again, we get:

S � S(P ) =
X

n�0

(�1)nmn�1
⇡

⌦n�n�1

✓X

n�0

(�1)n
X

0̂=x0<···<xn=1̂

[x0, x1][x1, x2] . . . [xn�1, xn

]

◆

=
X

n�0

X

0̂=x0<···<xn=1̂

(�1)n
X

U✓{1,2,...,n�1}

(�1)|U |+1[x0, x1][x1, x2] . . . [xn�1, xn

]

=
X

n�0

X

0̂=x0<···<xn=1̂

(�1)n+1
�1,n[x0, x1][x1, x2] . . . [xn�1, xn

]

= [P ]

where �1,n =

8
<

:
1 if n = 1

0 otherwise
⇤


