(2) (Computing antipodes)
(a) Compute the antipode of the Hopf algebra of symmetric functions described in Lectures 14 and 15.
Solution. (Worked with Karen and Seth) Let L_{p} be a chain with p edges. We use Takeuchi's formula to find the antipode:

$$
S=\sum_{n \geq 0}(-1)^{n} m^{n-1} \pi^{\otimes n} \Delta^{n-1}\left(L_{p}\right)
$$

Since $\Delta\left(L_{p}\right)=\sum_{i=0}^{p} L_{i} \otimes L_{p-1}$, applying $\Delta n-1$ times gives:

$$
\Delta^{n-1}\left(L_{p}\right)=\sum_{a_{1}+a_{2}+\cdots+a_{n}=p} L_{a_{1}} \otimes L_{a_{2}} \otimes \cdots \otimes L_{a_{n}}
$$

Since π removes degree 0 s, we restrict the above to be $0<a_{i} \leq p$. Thus the antipode is

$$
\begin{aligned}
S & =\sum_{n \geq 0}(-1)^{n} \sum_{a_{1}+a_{2}+\cdots+a_{n}=p} L_{a_{1}} \times L_{a_{2}} \times \cdots \times L_{a_{p}} \\
& =\sum_{n \geq 0} \sum_{a_{1}+a_{2}+\cdots+a_{n}=p}(-1)^{n} L_{a_{1}} \times L_{a_{2}} \times \cdots \times L_{a_{p}}
\end{aligned}
$$

where $0<a_{i} \leq p$. Notice further since $L_{a} \times L_{b}=L_{b} \times L_{a}$, we can "combine like terms", thus now we have

$$
S=\sum_{n \geq 0} \sum_{a_{1}+a_{2}+\cdots+a_{n}=p}(-1)^{n}\binom{p}{a_{1}, a_{2}, \ldots, a_{p}} L_{a_{1}} \times L_{a_{2}} \times \cdots \times L_{a_{p}}
$$

(b) Compute the antipode of the Hopf algebra of non-commutative symmetric functions described in Lecture 15.
Solution. (Worked with Karen and Seth) The difference from part a is that here $L_{a} \times L_{b} \neq L_{b} \times L_{a}$, so we cannot combine like terms. Thus

$$
S=\sum_{n \geq 0} \sum_{a_{1}+a_{2}+\cdots+a_{n}=p}(-1)^{n} L_{a_{1}} \times L_{a_{2}} \times \cdots \times L_{a_{p}}
$$

