Problem 6

(a) I will show how to find the addition formula. First, we note that

$$
\begin{aligned}
{[f(x)]^{n} } & =x^{n}+(\text { higher order terms }) \\
f^{n}(x) f^{m}(y) & =x^{n} y^{m}+\left(\text { higher order terms, } x^{p} x^{q}, p>n, q>m\right) \\
f(x+y) & =x+y+(\text { higher order terms }) .
\end{aligned}
$$

To get $f(x+y)=F(f(x), f(y))$, we need to match the coefficients

$$
\left[x^{i} y^{j}\right] f(x+y)=\left[x^{i} y^{j}\right] F(f(x), f(y))
$$

for all i and j, both not equal to zero (here the expression on the right is expanded completely). This is is easy if we start with i and j small and work our way up. Let

$$
\lambda_{i, j}=\left[f^{i}(x) f^{j}(y)\right] F(f(x), f(y))
$$

so that the λ 's are the coefficients of the non-expanded versions of powers of $f(x)$ and $f(y)$. Starting with $i=1$ and $j=0$ we see

$$
\lambda_{1,0}=[x] F(f(x), f(y))=[x] f(x+y)=1
$$

and vice-versa

$$
\lambda_{0,1}=[y] F(f(x), f(y))=[y] f(x+y)=1
$$

so far we know that

$$
F(f(x), f(y))=x+y+(\text { higher order terms }),
$$

which is we can write as a function of $f(x)$ and $f(y)$ by observing that
$F(f(x), f(y))=x+y+$ (higher order terms)
$=f(x)+f(y)+$ (same higher order terms) - (higher order terms of $f(x)+f(y))$
$=\lambda_{1,0} f(x)+\lambda_{0,1} f(y)+($ combined higher order terms $)$.

Since we are trying to create a series equal to $f(x+y)$, then

$$
\begin{aligned}
f(x+y) & =\lambda_{1,0} f(x)+\lambda_{0,1} f(y)+(\text { combined higher order terms }) \\
f(x+y)-\lambda_{1,0} f(x)-\lambda_{0,1} f(y) & =\text { (combined higher order terms) }
\end{aligned}
$$

We use this to proceed to values of i and j such that $i+j=2$. That is,

$$
\begin{aligned}
& \lambda_{2,0}=\left[x^{2}\right] F(f(x), f(y))=\left[x^{2}\right] f(x+y)-f(x)-f(y) \\
& \lambda_{1,1}=[x y] F(f(x), f(y))=[x y] f(x+y)-f(x)-f(y) \\
& \lambda_{0,2}=\left[y^{2}\right] F(f(x), f(y))=\left[y^{2}\right] f(x+y)-f(x)-f(y)
\end{aligned}
$$

and actually, this is redundant because $f(y)$ doesn't have any x^{2} terms, and the same goes for $f(x)$, more simply this is:

$$
\begin{aligned}
& \lambda_{2,0}=\left[x^{2}\right] F(f(x), f(y))=\left[x^{2}\right] f(x+y)-f(x) \\
& \lambda_{1,1}=[x y] F(f(x), f(y))=[x y] f(x+y)-f(x)-f(y) \\
& \lambda_{0,2}=\left[y^{2}\right] F(f(x), f(y))=\left[y^{2}\right] f(x+y)-f(y)
\end{aligned}
$$

We can follow this procedure indefinitely and recursively for find all $\lambda_{i, j}$, noting that only the coefficients of lower order terms are needed (so $\lambda_{i, j}$ only depends on $\lambda_{m, n}$ where neither $m>i$, nor $n>j$). The recursive formula is:

$$
\lambda_{i, j}=\left[x^{i} y^{j}\right] f(x+y)-\sum_{\substack{m \leq i \\ n \leq j}} \lambda_{n, m} f^{n}(x) f^{m}(y)
$$

Thus the addition formula exists and is unique since all the choices we made were necessary. It is

$$
F(f(x), f(y))=\sum_{i, j \in \mathbb{N}} \lambda_{i, j} f^{i}(x) f^{j}(y)
$$

or

$$
F(x, y)=\sum_{i, j \in \mathbb{N}} \lambda_{i, j} x^{i} y^{j}
$$

