O

(b) Prove that the two-sided ideal (xy — 1,yx — 1) is a biideal of F,
and therefore the quotient H = F'/(xy — 1, yx — 1) is a bialgebra.

Proof. J = (xy — 1,yx — 1) is an ideal by construction. Then we
must verify that J is a coideal. First, we check that J C kere.
Given h € J, we have h = a(zy—1)+b(yx—1)+(zxy—1)c+(yz—1)d
for a,b,c,d € F. Then

e(h) = e(a(zy — 1) + blyx — 1) + (zy — 1)c + (yx — 1)d)
)

= e(a)(e(zy) — €(1)) + () (e(yz) — €(1))
+ (e(ay) —e(1))e(e) + (e(yz) — e(1))e(d)
= c(a)(1—1) +e(b)(1 — 1) + (1 — De(c) + (1 — 1)e(d)

I
e

Next, we verify that A(J) C J® F + F ® J. Observe that
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Alzy — 1) = A(z)Ay) — A1)
=@@er)(yey) - 111
=ryRry—1®1

1
:§[xy®a:y+a:y®1—1®xy—1®1

tryQry—2yR@1+10zy —1®1]

_ %[(wy—1)®(:Ey+1)+(9€3/+1)®<37y_1)]

cJRF+F®J
This also works for (yz — 1),

Alyr —1) = A(x)Ay) — A1)

— %[(yx_1)®(yx+l)+(yx+1)®<y$_1)]

EJRQF+F®J

Since J is an ideal, (asis F'), then h@k(A(zy—1)) € JQF+F®J
forany f, k € F, asis (A(xy—1))h®k, and similarly for A(yx—1).
Then, apply A to an element of J.

Aa(zy — 1)b+ c(yx — 1)d)
= Ala)(A(zy = D)A(b) + Ae)(Alyz — 1)) A(d)
celreJ+J®F.
This verifies that J is a coideal, so J is a biideal. Thus H = F/.J

is a bialgebra.
O

Prove that H is a Hopf algebra by finding its (unique) antipode
S. Find the order of S.

Proof.

TR el S(r)®@x

A \m
S(z)x
T = 1 = =1
\ =zS(x)
A m
105 /
TRT r® S(x)

Thus, we see that S(z) = y.
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y®y Sy) @y
/ \m
S(y)y
Yy : 1 “ =1
\ = yS(y)
. /
yey ()

S(y)=x
To calculate S(z), we use the relation zy = 1 in the coproduct of
z.

Ty ® 2+ sel S(y)S(zr) ® z+
z2Q s(z)®@x

/ <
ryz+ S(z)x

z < 1 =0

\ = zyS(z) + 25(x)
A /Tm

TY ® z+ 05 xy®S(z)+
Z2Qx z2® S(x)

Since zy = 1, from the bottom equality S(z) + 25(z) = 0, we get
S(z) = —zy. Plugging into the top equality, we get z — zyx =
z — 2z = 0. Then we have a well defined antipode given by

S(x) =y
S(y) =z
S(z) = —zy.

We see that S?(z) = S(y) = z, S*(y) = S(x) = y. What remains

is to compute the order of S with respect to z:

S™M(z) = (=1)"zle 3T,

The computations here have been omitted for the sake of brevity.
The key to understanding this formula is to note that the antipode
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is an antihomomorphism. That is, for a,b € H, S(ab) = S(b)S(a).
Given this, and the fact that S(z) = —zy and S turns s into
ys and vice versa, we see that for a word of the form z™zy",
S(xz™zy™) = (S(y))"S(2)(S(x))™ = —a"2zy™". Then with each
application of S, all xs on the left become ys on the right, and
vice versa, and we add one extra y on the right side of z.
Since we are in a noncommutative algebra, and our only relations
are xy = yr = 1, we see that (—1)"zl3lzy/21 = 2 if and only if
n = 0. Then the order of S in H is infinite.

O

Prove that the two-sided ideal (z™ — 1) is a Hopf ideal of H, and
therefore J = H/(z™ — 1) is a Hopf algebra.

Proof. We check that K = (2™ — 1) is a biideal: Let h € K. Then
h =a(z™ — 1)+ (" — 1)b for some a,b € H.

e(h) =e(a(z" — 1) + (=™ — 1)b)
= e(a)(e(2)" — 1) + (e()" — 1)e(b)
= €(a)(0) + (0)e(b)
= O’
so K C kere.

= A(a(z" —1)b)
— Al)(AG") — A)A()
=Ala)(z" @ 2" —1® 1)A(b)

= A(a) (% (2" -1 @@"+1)+ (2" +1)® (2" — 1)]) A(b)

EHOK+K®H.

To show that the biideal is also a Hopf ideal, we need to show
that S(K) C K.

S(h) = S(a(z™ — 1) 4+ (" — 1)b)
= 5(a)(S(2") = 5(1)) + (S(=") — 5(1))5(b)
=S(a)(y" = 1)+ (y" = 1)S5(b)
= 5(a)(@" = 1)(=y") + («" = 1)(=y")S(b)

This completes the verification that K is a Hopf ideal, so H/K is
a Hopf algebra.
O

Prove that the antipode of J has order 2n.
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Proof. Note that our calculations from part (c) still hold after
modding out by K, so we still have

We still have S%(z) = x and S?(y) = y, so we need to recalculate
the order of S on z. Our relations are xy = yr = 2™ = 1. Also,
we can use the identity yz = 1 and 2™ =1 to get 1 = y".

S*(2) = (=1)'ateleylt]

vl
~

e
= Z.

Then

(-1
H

e

L,
L,
1.

ﬁ
[NIE
-
|

Y

By (—=1)¥ =1, we know k = 2m for some m € Z, so | 5] = [£] =
m. Then we are looking for the least m such that 2™ = y™ = 1.
This gives m = n, so the order of S on z is 2n. Since S*(z) =z
and S%(y) = y, then S?"(x) = z and S*"(y) = y, so the order of
S is 2n.

]



