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(b) Prove that the two-sided ideal 〈xy − 1, yx − 1〉 is a biideal of F ,
and therefore the quotient H = F/〈xy− 1, yx− 1〉 is a bialgebra.

Proof. J = 〈xy − 1, yx− 1〉 is an ideal by construction. Then we
must verify that J is a coideal. First, we check that J ⊆ ker ε.
Given h ∈ J , we have h = a(xy−1)+b(yx−1)+(xy−1)c+(yx−1)d
for a, b, c, d ∈ F . Then

ε(h) = ε(a(xy − 1) + b(yx− 1) + (xy − 1)c+ (yx− 1)d)

= ε(a)(ε(xy)− ε(1)) + ε(b)(ε(yx)− ε(1))

+ (ε(xy)− ε(1))ε(c) + (ε(yx)− ε(1))ε(d)

= ε(a)(1− 1) + ε(b)(1− 1) + (1− 1)ε(c) + (1− 1)ε(d)

= 0.

Next, we verify that ∆(J) ⊆ J ⊗ F + F ⊗ J . Observe that
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∆(xy − 1) = ∆(x)∆(y)−∆(1)

= (x⊗ x)(y ⊗ y)− 1⊗ 1

= xy ⊗ xy − 1⊗ 1

=
1

2
[xy ⊗ xy + xy ⊗ 1− 1⊗ xy − 1⊗ 1

+ xy ⊗ xy − xy ⊗ 1 + 1⊗ xy − 1⊗ 1]

=
1

2
[(xy − 1)⊗ (xy + 1) + (xy + 1)⊗ (xy − 1)]

∈ J ⊗ F + F ⊗ J

This also works for (yx− 1),

∆(yx− 1) = ∆(x)∆(y)−∆(1)

=
1

2
[(yx− 1)⊗ (yx+ 1) + (yx+ 1)⊗ (yx− 1)]

∈ J ⊗ F + F ⊗ J

Since J is an ideal, (as is F ), then h⊗k(∆(xy−1)) ∈ J⊗F+F⊗J
for any f, k ∈ F , as is (∆(xy−1))h⊗k, and similarly for ∆(yx−1).
Then, apply ∆ to an element of J .

∆(a(xy − 1)b+ c(yx− 1)d)

= ∆(a)(∆(xy − 1))∆(b) + ∆(c)(∆(yx− 1))∆(d)

∈ F ⊗ J + J ⊗ F.

This verifies that J is a coideal, so J is a biideal. Thus H = F/J
is a bialgebra.

�

(c) Prove that H is a Hopf algebra by finding its (unique) antipode
S. Find the order of S.

Proof.

x⊗ x S⊗I // S(x)⊗ x
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Thus, we see that S(x) = y.
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y ⊗ y I⊗S // y ⊗ S(y)
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S(y)=x
To calculate S(z), we use the relation xy = 1 in the coproduct of
z.

xy ⊗ z+
z ⊗ x

S⊗I// S(y)S(x)⊗ z+
s(z)⊗ x
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u//
xyz + S(z)x
= 0
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xy ⊗ z+
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I⊗S // xy ⊗ S(z)+
z ⊗ S(x)
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Since xy = 1, from the bottom equality S(z) + zS(x) = 0, we get
S(z) = −zy. Plugging into the top equality, we get z − zyx =
z − z = 0. Then we have a well defined antipode given by

S(x) = y

S(y) = x

S(z) = −zy.

We see that S2(x) = S(y) = x, S2(y) = S(x) = y. What remains
is to compute the order of S with respect to z:

S(z) = −zy
S2(z) = xzy

S3(z) = −xzy2

S4(z) = x2zy2

...

Sn(z) = (−1)nxb
n
2
czyd

n
2
e.

The computations here have been omitted for the sake of brevity.
The key to understanding this formula is to note that the antipode
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is an antihomomorphism. That is, for a, b ∈ H, S(ab) = S(b)S(a).
Given this, and the fact that S(z) = −zy and S turns xs into
ys and vice versa, we see that for a word of the form xmzyn,
S(xmzyn) = (S(y))nS(z)(S(x))m = −xnzym+1. Then with each
application of S, all xs on the left become ys on the right, and
vice versa, and we add one extra y on the right side of z.
Since we are in a noncommutative algebra, and our only relations
are xy = yx = 1, we see that (−1)nxb

n
2
czyd

n
2
e = z if and only if

n = 0. Then the order of S in H is infinite.
�

(d) Prove that the two-sided ideal 〈xn − 1〉 is a Hopf ideal of H, and
therefore J = H/〈xn − 1〉 is a Hopf algebra.

Proof. We check that K = 〈xn− 1〉 is a biideal: Let h ∈ K. Then
h = a(xn − 1) + (xn − 1)b for some a, b ∈ H.

ε(h) = ε(a(xn − 1) + (xn − 1)b)

= ε(a)(ε(x)n − 1) + (ε(x)n − 1)ε(b)

= ε(a)(0) + (0)ε(b)

= 0,

so K ⊆ ker ε.

∆(h) = ∆(a(xn − 1)b)

= ∆(a)(∆(xn)−∆(1))∆(b)

= ∆(a)(xn ⊗ xn − 1⊗ 1)∆(b)

= ∆(a)

(
1

2
[(xn − 1)⊗ (xn + 1) + (xn + 1)⊗ (xn − 1)]

)
∆(b)

∈ H ⊗K +K ⊗H.

To show that the biideal is also a Hopf ideal, we need to show
that S(K) ⊆ K.

S(h) = S(a(xn − 1) + (xn − 1)b)

= S(a)(S(xn)− S(1)) + (S(xn)− S(1))S(b)

= S(a)(yn − 1) + (yn − 1)S(b)

= S(a)(xn − 1)(−yn) + (xn − 1)(−yn)S(b)

∈ K.

This completes the verification that K is a Hopf ideal, so H/K is
a Hopf algebra.

�

(e) Prove that the antipode of J has order 2n.
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Proof. Note that our calculations from part (c) still hold after
modding out by K, so we still have

S(x) = y

S(y) = x

S(z) = −zy.

We still have S2(x) = x and S2(y) = y, so we need to recalculate
the order of S on z. Our relations are xy = yx = xn = 1. Also,
we can use the identity yx = 1 and xn = 1 to get 1 = yn.

Sk(z) = (−1)kxb
k
2
czyd

k
2
e

set
= z.

Then

(−1)k = 1,

xb
k
2
c = 1,

yd
k
2
e = 1.

By (−1)k = 1, we know k = 2m for some m ∈ Z, so bk
2
c = dk

2
e =

m. Then we are looking for the least m such that xm = ym = 1.
This gives m = n, so the order of S on z is 2n. Since S2(x) = x
and S2(y) = y, then S2n(x) = x and S2n(y) = y, so the order of
S is 2n.

�

(5) (Hopf algebras of permutations and graphs.)

(a) Recall that we defined the Hopf algebra of graphs on the linear
span of the isomorphism classes of finite simple graphs. The prod-
uct G · H is the disjoint union of G and H. The coproduct of a
graph G on vertex set V is ∆(G) =

∑
S⊆V G|S ⊗G|V \S. Here G|A

denotes the induced subgraph of G with vertex set A. The unit
is given by u(1) = ∅, the graph with no vertices. The counit is
given by ε(∅) = 1 and ε(G) = 0 for all G 6= ∅. Vertify that this is
indeed a Hopf algebra. Find a simple formula for the antipode.

Proof. To verify that this is a Hopf algebra, we must check the
following properties: associative multiplication coassociative co-
multiplication, unitary and counitary properties, m and u coalge-
bra morphisms, and a well defined antipode.

Associative multiplication is trivial, since multiplication is given
by the disjoint union. (A ·B) ·C = A · (B ·C) for all disjoint sets
A,B and C.


