(b) Prove that the two-sided ideal $\langle xy - 1, yx - 1 \rangle$ is a bideal of F, and therefore the quotient $H = F/\langle xy - 1, yx - 1 \rangle$ is a bialgebra.

Proof. $J = \langle xy - 1, yx - 1 \rangle$ is an ideal by construction. Then we must verify that J is a coideal. First, we check that $J \subseteq \ker \epsilon$. Given $h \in J$, we have h = a(xy-1)+b(yx-1)+(xy-1)c+(yx-1)d for $a, b, c, d \in F$. Then

$$\begin{aligned} \epsilon(h) &= \epsilon(a(xy-1) + b(yx-1) + (xy-1)c + (yx-1)d) \\ &= \epsilon(a)(\epsilon(xy) - \epsilon(1)) + \epsilon(b)(\epsilon(yx) - \epsilon(1)) \\ &+ (\epsilon(xy) - \epsilon(1))\epsilon(c) + (\epsilon(yx) - \epsilon(1))\epsilon(d) \\ &= \epsilon(a)(1-1) + \epsilon(b)(1-1) + (1-1)\epsilon(c) + (1-1)\epsilon(d) \\ &= 0. \end{aligned}$$

Next, we verify that $\Delta(J) \subseteq J \otimes F + F \otimes J$. Observe that

$$\begin{split} \Delta(xy-1) &= \Delta(x)\Delta(y) - \Delta(1) \\ &= (x \otimes x)(y \otimes y) - 1 \otimes 1 \\ &= xy \otimes xy - 1 \otimes 1 \\ &= \frac{1}{2}[xy \otimes xy + xy \otimes 1 - 1 \otimes xy - 1 \otimes 1] \\ &\quad + xy \otimes xy - xy \otimes 1 + 1 \otimes xy - 1 \otimes 1] \\ &= \frac{1}{2}[(xy-1) \otimes (xy+1) + (xy+1) \otimes (xy-1)] \\ &\in J \otimes F + F \otimes J \end{split}$$

This also works for (yx - 1),

$$\Delta(yx-1) = \Delta(x)\Delta(y) - \Delta(1)$$

= $\frac{1}{2}[(yx-1)\otimes(yx+1) + (yx+1)\otimes(yx-1)]$
 $\in J \otimes F + F \otimes J$

Since J is an ideal, (as is F), then $h \otimes k(\Delta(xy-1)) \in J \otimes F + F \otimes J$ for any $f, k \in F$, as is $(\Delta(xy-1))h \otimes k$, and similarly for $\Delta(yx-1)$. Then, apply Δ to an element of J.

$$\Delta(a(xy-1)b + c(yx-1)d)$$

= $\Delta(a)(\Delta(xy-1))\Delta(b) + \Delta(c)(\Delta(yx-1))\Delta(d)$
 $\in F \otimes J + J \otimes F.$

This verifies that J is a coideal, so J is a biideal. Thus H = F/J is a bialgebra.

(c) Prove that H is a Hopf algebra by finding its (unique) antipode S. Find the order of S.

Proof.

Thus, we see that S(x) = y.

Since xy = 1, from the bottom equality S(z) + zS(x) = 0, we get S(z) = -zy. Plugging into the top equality, we get z - zyx = z - z = 0. Then we have a well defined antipode given by

$$S(x) = y$$

$$S(y) = x$$

$$S(z) = -zy.$$

We see that $S^2(x) = S(y) = x$, $S^2(y) = S(x) = y$. What remains is to compute the order of S with respect to z:

$$S(z) = -zy$$

$$S^{2}(z) = xzy$$

$$S^{3}(z) = -xzy^{2}$$

$$S^{4}(z) = x^{2}zy^{2}$$

$$\vdots$$

$$S^{n}(z) = (-1)^{n}x^{\lfloor \frac{n}{2} \rfloor}zy^{\lceil \frac{n}{2} \rceil}.$$

The computations here have been omitted for the sake of brevity. The key to understanding this formula is to note that the antipode

ZACHARY BOWEN

is an antihomomorphism. That is, for $a, b \in H$, S(ab) = S(b)S(a). Given this, and the fact that S(z) = -zy and S turns xs into ys and vice versa, we see that for a word of the form $x^m z y^n$, $S(x^m z y^n) = (S(y))^n S(z)(S(x))^m = -x^n z y^{m+1}$. Then with each application of S, all xs on the left become ys on the right, and vice versa, and we add one extra y on the right side of z. Since we are in a noncommutative algebra, and our only relations are xy = yx = 1, we see that $(-1)^n x^{\lfloor \frac{n}{2} \rfloor} z y^{\lceil \frac{n}{2} \rceil} = z$ if and only if n = 0. Then the order of S in H is infinite.

(d) Prove that the two-sided ideal $\langle x^n - 1 \rangle$ is a Hopf ideal of H, and therefore $J = H/\langle x^n - 1 \rangle$ is a Hopf algebra.

Proof. We check that $K = \langle x^n - 1 \rangle$ is a biideal: Let $h \in K$. Then $h = a(x^n - 1) + (x^n - 1)b$ for some $a, b \in H$.

$$\epsilon(h) = \epsilon(a(x^n - 1) + (x^n - 1)b)$$

= $\epsilon(a)(\epsilon(x)^n - 1) + (\epsilon(x)^n - 1)\epsilon(b)$
= $\epsilon(a)(0) + (0)\epsilon(b)$
= 0,

so $K \subseteq \ker \epsilon$.

$$\begin{aligned} \Delta(h) &= \Delta(a(x^n - 1)b) \\ &= \Delta(a)(\Delta(x^n) - \Delta(1))\Delta(b) \\ &= \Delta(a)(x^n \otimes x^n - 1 \otimes 1)\Delta(b) \\ &= \Delta(a) \left(\frac{1}{2}\left[(x^n - 1) \otimes (x^n + 1) + (x^n + 1) \otimes (x^n - 1)\right]\right)\Delta(b) \\ &\in H \otimes K + K \otimes H. \end{aligned}$$

To show that the bideal is also a Hopf ideal, we need to show that $S(K) \subseteq K$.

$$S(h) = S(a(x^{n} - 1) + (x^{n} - 1)b)$$

= $S(a)(S(x^{n}) - S(1)) + (S(x^{n}) - S(1))S(b)$
= $S(a)(y^{n} - 1) + (y^{n} - 1)S(b)$
= $S(a)(x^{n} - 1)(-y^{n}) + (x^{n} - 1)(-y^{n})S(b)$
 $\in K.$

This completes the verification that K is a Hopf ideal, so H/K is a Hopf algebra.

(e) Prove that the antipode of J has order 2n.

HW #3

Proof. Note that our calculations from part (c) still hold after modding out by K, so we still have

$$S(x) = y$$

$$S(y) = x$$

$$S(z) = -zy.$$

We still have $S^2(x) = x$ and $S^2(y) = y$, so we need to recalculate the order of S on z. Our relations are $xy = yx = x^n = 1$. Also, we can use the identity yx = 1 and $x^n = 1$ to get $1 = y^n$.

$$S^{k}(z) = (-1)^{k} x^{\lfloor \frac{k}{2} \rfloor} z y^{\lceil \frac{k}{2} \rceil}$$
$$\stackrel{set}{=} z.$$

Then

$$(-1)^{k} = 1,$$
$$x^{\lfloor \frac{k}{2} \rfloor} = 1,$$
$$y^{\lceil \frac{k}{2} \rceil} = 1.$$

By $(-1)^k = 1$, we know k = 2m for some $m \in \mathbb{Z}$, so $\lfloor \frac{k}{2} \rfloor = \lceil \frac{k}{2} \rceil = m$. Then we are looking for the least m such that $x^m = y^m = 1$. This gives m = n, so the order of S on z is 2n. Since $S^2(x) = x$ and $S^2(y) = y$, then $S^{2n}(x) = x$ and $S^{2n}(y) = y$, so the order of S is 2n.