(b) Prove that the two-sided ideal $\langle x y-1, y x-1\rangle$ is a biideal of F, and therefore the quotient $H=F /\langle x y-1, y x-1\rangle$ is a bialgebra.

Proof. $J=\langle x y-1, y x-1\rangle$ is an ideal by construction. Then we must verify that J is a coideal. First, we check that $J \subseteq \operatorname{ker} \epsilon$. Given $h \in J$, we have $h=a(x y-1)+b(y x-1)+(x y-1) c+(y x-1) d$ for $a, b, c, d \in F$. Then

$$
\begin{aligned}
\epsilon(h)= & \epsilon(a(x y-1)+b(y x-1)+(x y-1) c+(y x-1) d) \\
= & \epsilon(a)(\epsilon(x y)-\epsilon(1))+\epsilon(b)(\epsilon(y x)-\epsilon(1)) \\
& +(\epsilon(x y)-\epsilon(1)) \epsilon(c)+(\epsilon(y x)-\epsilon(1)) \epsilon(d) \\
= & \epsilon(a)(1-1)+\epsilon(b)(1-1)+(1-1) \epsilon(c)+(1-1) \epsilon(d) \\
= & 0 .
\end{aligned}
$$

Next, we verify that $\Delta(J) \subseteq J \otimes F+F \otimes J$. Observe that

$$
\begin{aligned}
\Delta(x y-1)= & \Delta(x) \Delta(y)-\Delta(1) \\
= & (x \otimes x)(y \otimes y)-1 \otimes 1 \\
= & x y \otimes x y-1 \otimes 1 \\
= & \frac{1}{2}[x y \otimes x y+x y \otimes 1-1 \otimes x y-1 \otimes 1 \\
& \quad+x y \otimes x y-x y \otimes 1+1 \otimes x y-1 \otimes 1] \\
= & \frac{1}{2}[(x y-1) \otimes(x y+1)+(x y+1) \otimes(x y-1)] \\
\in & J \otimes F+F \otimes J
\end{aligned}
$$

This also works for $(y x-1)$,

$$
\begin{aligned}
\Delta(y x-1) & =\Delta(x) \Delta(y)-\Delta(1) \\
& =\frac{1}{2}[(y x-1) \otimes(y x+1)+(y x+1) \otimes(y x-1)] \\
& \in J \otimes F+F \otimes J
\end{aligned}
$$

Since J is an ideal, (as is $F)$, then $h \otimes k(\Delta(x y-1)) \in J \otimes F+F \otimes J$ for any $f, k \in F$, as is $(\Delta(x y-1)) h \otimes k$, and similarly for $\Delta(y x-1)$. Then, apply Δ to an element of J.

$$
\begin{aligned}
& \Delta(a(x y-1) b+c(y x-1) d) \\
& \quad=\Delta(a)(\Delta(x y-1)) \Delta(b)+\Delta(c)(\Delta(y x-1)) \Delta(d) \\
& \quad \in F \otimes J+J \otimes F .
\end{aligned}
$$

This verifies that J is a coideal, so J is a biideal. Thus $H=F / J$ is a bialgebra.
(c) Prove that H is a Hopf algebra by finding its (unique) antipode S. Find the order of S.

Proof.

Thus, we see that $S(x)=y$.

$S(y)=x$
To calculate $S(z)$, we use the relation $x y=1$ in the coproduct of z.

Since $x y=1$, from the bottom equality $S(z)+z S(x)=0$, we get $S(z)=-z y$. Plugging into the top equality, we get $z-z y x=$ $z-z=0$. Then we have a well defined antipode given by

$$
\begin{aligned}
& S(x)=y \\
& S(y)=x \\
& S(z)=-z y .
\end{aligned}
$$

We see that $S^{2}(x)=S(y)=x, S^{2}(y)=S(x)=y$. What remains is to compute the order of S with respect to z :

$$
\begin{aligned}
S(z) & =-z y \\
S^{2}(z) & =x z y \\
S^{3}(z) & =-x z y^{2} \\
S^{4}(z) & =x^{2} z y^{2} \\
\vdots & \\
S^{n}(z) & =(-1)^{n} x^{\left\lfloor\frac{n}{2}\right\rfloor} z y^{\left\lceil\frac{n}{2}\right\rceil} .
\end{aligned}
$$

The computations here have been omitted for the sake of brevity. The key to understanding this formula is to note that the antipode
is an antihomomorphism. That is, for $a, b \in H, S(a b)=S(b) S(a)$. Given this, and the fact that $S(z)=-z y$ and S turns x s into $y s$ and vice versa, we see that for a word of the form $x^{m} z y^{n}$, $S\left(x^{m} z y^{n}\right)=(S(y))^{n} S(z)(S(x))^{m}=-x^{n} z y^{m+1}$. Then with each application of S, all x s on the left become y s on the right, and vice versa, and we add one extra y on the right side of z.
Since we are in a noncommutative algebra, and our only relations are $x y=y x=1$, we see that $(-1)^{n} x^{\left\lfloor\frac{n}{2}\right\rfloor} z y^{\left\lfloor\frac{n}{2}\right\rceil}=z$ if and only if $n=0$. Then the order of S in H is infinite.
(d) Prove that the two-sided ideal $\left\langle x^{n}-1\right\rangle$ is a Hopf ideal of H, and therefore $J=H /\left\langle x^{n}-1\right\rangle$ is a Hopf algebra.

Proof. We check that $K=\left\langle x^{n}-1\right\rangle$ is a biideal: Let $h \in K$. Then $h=a\left(x^{n}-1\right)+\left(x^{n}-1\right) b$ for some $a, b \in H$.

$$
\begin{aligned}
\epsilon(h) & =\epsilon\left(a\left(x^{n}-1\right)+\left(x^{n}-1\right) b\right) \\
& =\epsilon(a)\left(\epsilon(x)^{n}-1\right)+\left(\epsilon(x)^{n}-1\right) \epsilon(b) \\
& =\epsilon(a)(0)+(0) \epsilon(b) \\
& =0,
\end{aligned}
$$

so $K \subseteq \operatorname{ker} \epsilon$.

$$
\begin{aligned}
\Delta(h) & =\Delta\left(a\left(x^{n}-1\right) b\right) \\
& =\Delta(a)\left(\Delta\left(x^{n}\right)-\Delta(1)\right) \Delta(b) \\
& =\Delta(a)\left(x^{n} \otimes x^{n}-1 \otimes 1\right) \Delta(b) \\
& =\Delta(a)\left(\frac{1}{2}\left[\left(x^{n}-1\right) \otimes\left(x^{n}+1\right)+\left(x^{n}+1\right) \otimes\left(x^{n}-1\right)\right]\right) \Delta(b) \\
& \in H \otimes K+K \otimes H
\end{aligned}
$$

To show that the biideal is also a Hopf ideal, we need to show that $S(K) \subseteq K$.

$$
\begin{aligned}
S(h) & =S\left(a\left(x^{n}-1\right)+\left(x^{n}-1\right) b\right) \\
& =S(a)\left(S\left(x^{n}\right)-S(1)\right)+\left(S\left(x^{n}\right)-S(1)\right) S(b) \\
& =S(a)\left(y^{n}-1\right)+\left(y^{n}-1\right) S(b) \\
& =S(a)\left(x^{n}-1\right)\left(-y^{n}\right)+\left(x^{n}-1\right)\left(-y^{n}\right) S(b) \\
& \in K .
\end{aligned}
$$

This completes the verification that K is a Hopf ideal, so H / K is a Hopf algebra.
(e) Prove that the antipode of J has order $2 n$.

Proof. Note that our calculations from part (c) still hold after modding out by K, so we still have

$$
\begin{aligned}
& S(x)=y \\
& S(y)=x \\
& S(z)=-z y .
\end{aligned}
$$

We still have $S^{2}(x)=x$ and $S^{2}(y)=y$, so we need to recalculate the order of S on z. Our relations are $x y=y x=x^{n}=1$. Also, we can use the identity $y x=1$ and $x^{n}=1$ to get $1=y^{n}$.

$$
\begin{aligned}
S^{k}(z) & =(-1)^{k} x^{\left\lfloor\frac{k}{2}\right\rfloor} z y^{\left\lceil\frac{k}{2}\right\rceil} \\
& \stackrel{\text { set }}{=} z .
\end{aligned}
$$

Then

$$
\begin{aligned}
(-1)^{k} & =1, \\
x^{\left\lfloor\frac{k}{2}\right\rfloor} & =1, \\
y^{\left\lceil\frac{k}{2}\right\rceil} & =1 .
\end{aligned}
$$

By $(-1)^{k}=1$, we know $k=2 m$ for some $m \in \mathbb{Z}$, so $\left\lfloor\frac{k}{2}\right\rfloor=\left\lceil\frac{k}{2}\right\rceil=$ m. Then we are looking for the least m such that $x^{m}=y^{m}=1$. This gives $m=n$, so the order of S on z is $2 n$. Since $S^{2}(x)=x$ and $S^{2}(y)=y$, then $S^{2 n}(x)=x$ and $S^{2 n}(y)=y$, so the order of S is $2 n$.

