Problem 2

Proposition. The finite dimensional coalgebra $\left(\mathbb{H}^{*}, \Delta, \epsilon\right)$ with dual basis $\left\{1^{*}, i^{*}, j^{*}, k^{*}\right\}$ has the co-product defined by:

$$
\begin{aligned}
\Delta 1^{*} & =1^{*} \otimes 1^{*}-i^{*} \otimes i^{*}-j^{*} \otimes j^{*}-k^{*} \otimes k^{*} \\
\Delta i^{*} & =1^{*} \otimes i^{*}+i^{*} \otimes 1^{*}+j^{*} \otimes k^{*}-k^{*} \otimes j^{*} \\
\Delta j^{*} & =1^{*} \otimes j^{*}+j^{*} \otimes 1^{*}+k^{*} \otimes i^{*}-i^{*} \otimes k^{*} \\
\Delta k^{*} & =1^{*} \otimes k^{*}+k^{*} \otimes 1^{*}+i^{*} \otimes j^{*}-j^{*} \otimes i^{*}
\end{aligned}
$$

Proof. (Worked with Maria and Brian) Let $e_{0}=1, e_{1}=i, e_{2}=j$, and $e_{3}=k$, and since \mathbb{H} is finite dimensional, the dual \mathbb{H}^{*} has a basis of functionals $\left\{e_{0}^{*}, e_{1}^{*}, e_{2}^{*}, e_{3}^{*}\right\}$ defined on the basis of \mathbb{H} by

$$
e_{k}^{*}\left(e_{j}\right)=\delta_{j k}= \begin{cases}1 & j=k \\ 0 & j \neq k\end{cases}
$$

Let $\rho: \mathbb{H}^{*} \otimes \mathbb{H}^{*} \rightarrow(\mathbb{H} \otimes \mathbb{H})^{*}$ be the injective linear map we defined earlier as $\left\langle\rho\left(g^{*} \otimes h^{*}\right), a \otimes b\right\rangle=\left\langle g^{*}, a\right\rangle\left\langle h^{*}, b\right\rangle$. The coproduct $\Delta: \mathbb{H}^{*} \rightarrow \mathbb{H}^{*} \otimes \mathbb{H}^{*}$ then must be defined using the dual of the multiplication of the algebra m^{*} with the formula

$$
\Delta=\rho^{-1} m^{*}
$$

Since

$$
\Delta e_{k}^{*}=\sum_{i, j \leq 3} \lambda_{i j}^{(k)} e_{i}^{*} \otimes e_{j}^{*}
$$

for some scalars $\lambda_{i j}^{(k)}$, then to find the values of these scalars we observe that by applying ρ to both sides,

$$
\begin{aligned}
\rho \Delta e_{k}^{*} & =\rho \sum_{i, j \leq 3} \lambda_{i j}^{(k)} e_{i}^{*} \otimes e_{j}^{*} \\
\rho \rho^{-1} m^{*} e_{k}^{*} & =\sum_{i, j \leq 3} \lambda_{i j}^{(k)} \rho\left(e_{i}^{*} \otimes e_{j}^{*}\right) \\
m^{*} e_{k}^{*} & =\sum_{i, j \leq 3} \lambda_{i j}^{(k)} \rho\left(e_{i}^{*} \otimes e_{j}^{*}\right) .
\end{aligned}
$$

We evaluate these functionals on the basis of $\mathbb{H} \otimes \mathbb{H}$, so for all $p, q \leq 3$

$$
\begin{aligned}
\left\langle m^{*} e_{k}^{*}, e_{p} \otimes e_{q}\right\rangle & =\left\langle\sum_{i, j \leq 3} \lambda_{i j}^{(k)} \rho\left(e_{i}^{*} \otimes e_{j}^{*}\right), e_{p} \otimes e_{q}\right\rangle \\
\left\langle e_{k}^{*}, m\left(e_{p} \otimes e_{q}\right)\right\rangle & =\sum_{i, j \leq 3} \lambda_{i j}^{(k)}\left\langle e_{i}^{*}, e_{p}\right\rangle\left\langle e_{j}^{*}, e_{q}\right\rangle \\
\left\langle e_{k}^{*}, m\left(e_{p} \otimes e_{q}\right)\right\rangle & =\lambda_{p q}^{(k)}
\end{aligned}
$$

where $\left\langle e_{k}^{*}, m\left(e_{p} \otimes e_{q}\right)\right\rangle$ is the e_{k}-coordinate of $e_{p} \otimes e_{q}$. This means that

$$
\Delta e_{k}^{*}=\sum_{i, j \leq 3}\left(\text { the } e_{k} \text {-coordinate of } e_{i} e_{j}\right) e_{i}^{*} \otimes e_{j}^{*}
$$

For example, $\Delta 1^{*}$ only includes tensors of the form $e_{i}^{*} \otimes e_{j}^{*}$ where $e_{i} e_{j}$ equals 1 or -1 . This is only true for $1 \cdot 1=1$, $i \cdot i=-1, j \cdot j=-1$, and $k \cdot k=-1$, so

$$
\Delta 1^{*}=1^{*} \otimes 1^{*}-i^{*} \otimes i^{*}-j^{*} \otimes j^{*}-k^{*} \otimes k^{*}
$$

The rest are shown similarly.
Proposition. 1* is a cocommutative element that generates a subcoalgebra that is not commutative.
Proof. Since $\Delta 1^{*}=1^{*} \otimes 1^{*}-i^{*} \otimes i^{*}-j^{*} \otimes j^{*}-k^{*} \otimes k^{*}$, the element $1^{*} \in \mathbb{H}^{*}$ satisfies $T \Delta 1^{*}=\Delta 1^{*}$ and is thus cocommutative. Since $\Delta 1^{*}$ introduces the terms i^{*}, j^{*}, and k^{*}, it generates the whole coalgebra. So since it contains the element i^{*}, which is noncocommutative because

$$
\Delta i^{*}=1^{*} \otimes i^{*}+i^{*} \otimes 1^{*}+j^{*} \otimes k^{*}-k^{*} \otimes j^{*}
$$

the generated (trivial) subcoalgebra is noncocommutative.

Problem 3

(a) (Worked with Brian and Maria) Using Sweedler notation we have

$$
\begin{aligned}
\sum_{(h)}\left(h_{(1)} S\left(h_{(2)}\right) \otimes h_{(3)}\right) & =\sum_{(h)}\left(u \epsilon\left(h_{(1)}\right) \otimes h_{(2)}\right) \\
& =\sum_{(h)}\left(\epsilon\left(h_{(1)}\right) \otimes h_{(2)}\right) \\
& =h .
\end{aligned}
$$

where the first equality is given by a modified form of the antipode diagram

