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Now, to find the total number of chains in [x, y], we just sum this over all lengths, so

(# of chains in [x.y]) =
�

n≥0

(ζ − 1)n [x, y]

=
�

n≥0

(−1)n (1− ζ)n [x, y]

= (1+ 1− ζ)−1 [x, y]

= (2− ζ)−1 [x, y] .

Note that this expansion is valid because contains only finitely many terms, as for sufficiently large n,

(ζ − 1)n [x, y] must be zero for our finite poset.

(c) Suppose that

g (y) =
�

x≤y

f (x) , for all y ∈ P .

then we have for the expression with fixed y

�

y≥x

µ (x, y) g (x) =
�

y≥x

µ (x, y)
�

x≥w

f (w)

=
�

y≥x≥w

µ (x, y) f (w)

=
�

y≥w

�

y≥x≥w

µ (x, y) f (w)

=
�

y≥w

f (w)
�

y≥x≥w

ζ (w, x)µ (x, y)

=
�

y≥w

f (w) · 1 [w, y]

= f (y) .

Next, suppose that f (y) =
�

y≥x
µ (x, y) g (x). Then for fixed y

�

y≥x

f (x) =
�

y≥x

�

x≥w

µ (w, x) g (w)

=
�

y≥w

g (w)
�

w≤x≤y

µ (w, x) ζ (x, y)

=
�

y≥w

g (w) · 1 [w, y]

= g (y) ,

as desired.

Problem 2

Proposition. The finite dimensional coalgebra (H∗
,∆, �) with dual basis {1∗, i∗, j∗, k∗} has the co-product defined

by:

∆1∗ = 1∗ ⊗ 1∗ − i
∗ ⊗ i

∗ − j
∗ ⊗ j

∗ − k
∗ ⊗ k

∗

∆i
∗ = 1∗ ⊗ i

∗ + i
∗ ⊗ 1∗ + j

∗ ⊗ k
∗ − k

∗ ⊗ j
∗

∆j
∗ = 1∗ ⊗ j

∗ + j
∗ ⊗ 1∗ + k

∗ ⊗ i
∗ − i

∗ ⊗ k
∗

∆k
∗ = 1∗ ⊗ k

∗ + k
∗ ⊗ 1∗ + i

∗ ⊗ j
∗ − j

∗ ⊗ i
∗
.

Proof. (Worked with Maria and Brian) Let e0 = 1, e1 = i, e2 = j, and e3 = k, and since H is finite dimensional,

the dual H
∗

has a basis of functionals {e∗0, e∗1, e∗2, e∗3} defined on the basis of H by

e
∗
k
(ej) = δjk =

�
1 j = k

0 j �= k
.
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Let ρ : H∗ ⊗ H
∗ → (H⊗H)∗ be the injective linear map we defined earlier as �ρ (g∗ ⊗ h

∗) , a⊗ b� =�g∗, a� �h∗
, b�.

The coproduct ∆ : H∗ → H
∗ ⊗H

∗
then must be defined using the dual of the multiplication of the algebra m

∗
with

the formula

∆ = ρ
−1

m
∗
.

Since

∆e
∗
k
=

�

i,j≤3

λ
(k)
ij

e
∗
i
⊗ e

∗
j

for some scalars λ
(k)
ij

, then to find the values of these scalars we observe that by applying ρ to both sides,

ρ∆e
∗
k

= ρ

�

i,j≤3

λ
(k)
ij

e
∗
i
⊗ e

∗
j

ρρ
−1

m
∗
e
∗
k

=
�

i,j≤3

λ
(k)
ij

ρ
�
e
∗
i
⊗ e

∗
j

�

m
∗
e
∗
k

=
�

i,j≤3

λ
(k)
ij

ρ
�
e
∗
i
⊗ e

∗
j

�
.

We evaluate these functionals on the basis of H⊗H, so for all p, q ≤ 3

�m∗
e
∗
k
, ep ⊗ eq� =

�
�

i,j≤3

λ
(k)
ij

ρ
�
e
∗
i
⊗ e

∗
j

�
, ep ⊗ eq

�

�e∗
k
,m (ep ⊗ eq)� =

�

i,j≤3

λ
(k)
ij

�e∗
i
, ep�

�
e
∗
j
, eq

�

�e∗
k
,m (ep ⊗ eq)� = λ

(k)
pq

where �e∗
k
,m (ep ⊗ eq)� is the ek-coordinate of ep ⊗ eq. This means that

∆e
∗
k
=

�

i,j≤3

(the ek-coordinate of eiej) e
∗
i
⊗ e

∗
j
.

For example, ∆1∗ only includes tensors of the form e
∗
i
⊗ e

∗
j

where eiej equals 1 or −1. This is only true for 1 ·1 = 1,
i · i = −1, j · j = −1, and k · k = −1, so

∆1∗ = 1∗ ⊗ 1∗ − i
∗ ⊗ i

∗ − j
∗ ⊗ j

∗ − k
∗ ⊗ k

∗
.

The rest are shown similarly. �
Proposition. 1∗ is a cocommutative element that generates a subcoalgebra that is not commutative.
Proof. Since ∆1∗ = 1∗ ⊗ 1∗ − i

∗ ⊗ i
∗ − j

∗ ⊗ j
∗ − k

∗ ⊗ k
∗
, the element 1∗ ∈ H

∗
satisfies T∆1∗ = ∆1∗ and is thus

cocommutative. Since ∆1∗ introduces the terms i
∗
, j

∗
, and k

∗
, it generates the whole coalgebra. So since it contains

the element i
∗
, which is noncocommutative because

∆i
∗ = 1∗ ⊗ i

∗ + i
∗ ⊗ 1∗ + j

∗ ⊗ k
∗ − k

∗ ⊗ j
∗

the generated (trivial) subcoalgebra is noncocommutative. �

Problem 3

(a) (Worked with Brian and Maria) Using Sweedler notation we have

�

(h)

�
h(1)S

�
h(2)

�
⊗ h(3)

�
=

�

(h)

�
u�

�
h(1)

�
⊗ h(2)

�

=
�

(h)

�
�
�
h(1)

�
⊗ h(2)

�

= h.

where the first equality is given by a modified form of the antipode diagram

H ⊗H ⊗H
S⊗Id⊗Id �� H ⊗H ⊗H

m⊗Id

�������������

H ⊗H

∆⊗Id

�������������
�⊗Id �� K⊗H

u⊗Id �� H ⊗H


