5. (a)For a finite poset *P* regard the set $Int(P) = \{[x, y] : x \le y \text{ in } P\}$ as a poset ordered by containment. Let $J^{\circ}(Int(P))$ be the poset of downsets of Int(P) ordered by reverse containment. Prove that the poset of ideals of the incindence algebra is isomorphic to $J^{\circ}(Int(P))$.

(I worked with Fernando Torres and Sebastián Osorio) Let *I* be an ideal of the incidence algebra and let's consider $I^{\perp} = \{[x, y] : f([x, y]) = 0 \text{ for all } f \in I\}$. We'll see that I^{\perp} is a downset:

Let $[x, y] \in I^{\perp}$. If $f \in I$ and $g \in I(P)$ then $gf \in I$ i.e. gf([x, y]) = 0 which means:

$$\sum_{x \le z \le y} g[x, z] f[z, y] = 0$$

and this works for all $g \in I(P)$. In particular if we take $g = [x, z]^*$ we get f([z, y]) = 0 for all $f \in I$, then $[x, z] \in I^{\perp}$ for all $x \le z \le y$.

Analogously (since *I* is a two side ideal) we have $[z, y] \in I^{\perp}$ for all $x \le z \le y$ therefore if $[a, b] \subset [x, y]$ we have:

 $[x, y] \in I^{\perp} \Rightarrow [x, b] \in I^{\perp} \Rightarrow [a, b] \in I^{\perp}$ Hence I^{\perp} is a downset i.e. $I^{\perp} \in J^{\circ}(Int(P))$

On the other hand, a downset is clearly a subcoalgebra. Therefore the map $I \rightarrow I^{\perp}$ is a biyection.

Finally, let $I \subset J$ be two ideals of I(P). If $f \in J^{\perp}$, then f([x, y]) = 0 for all $[x, y] \in J$ then off course $f \in I^{\perp}$. Hence our map preserves the order and our posets are isomorphic.