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Proof. Define m : C∗ ⊗ C
∗ → C

∗ as m = ∆∗ ◦ ρ where ρ : C∗ ⊗ C
∗ → (C ⊗ C)∗ as defined in class (m∗ ⊗ n

∗ �→
�m∗

, ·� �n∗
, ·�) and ∆∗ : (C ⊗ C)∗ → C

∗ is the dual of ∆. First note that for a
∗
, b

∗ ∈ C
∗ and c ∈ C,

m (a∗ ⊗ b
∗) (c) = �m (a∗ ⊗ b

∗) , c�
= �∆∗

ρ (a∗ ⊗ b
∗) , c�

= �ρ (a∗ ⊗ b
∗) ,∆c�

=

�
ρ (a∗ ⊗ b

∗) ,
�

(c)

c(1) ⊗ c(2)

�

=
�

(c)

�
ρ (a∗ ⊗ b

∗) , c(1) ⊗ c(2)

�

=
�

(c)

�
a, c(1)

� �
b, c(2)

�
.

Thus associativity of m holds because for x
∗
, y

∗
, z

∗ ∈ C
∗ and c ∈ C, we have

m (m (x∗ ⊗ y
∗)⊗ z

∗) (c) =
�

(c)

�
m (x∗ ⊗ y

∗) , c(1)
� �

z, c(2)

�

=
�

(c)

�
x, c(1)(1)

��
y, c(1)(2)

� �
z, c(2)

�

=
�

(c)

�
x, c(1)

� �
y, c(2)

� �
z, c(3)

�

�

(c)

�
x, c(1)

� �
y, c(2)(1)

��
z, c(2)(2)

�

=
�

(c)

�
x, c(1)

� �
m (y∗ ⊗ z

∗) , c(2)
�

= m (x∗ ⊗m (y∗ ⊗ z
∗)) (c) .

Note the coassociativity of ∆ is shown with the judicious use of the Sweedler subscripts.
Next, define µ : F → C

∗ as �
∗ ◦ f where f : F → F∗ is the natural isomorphism and �

∗ : F∗ → C∗ is the dual of
�. Specifically, we need to check that m (c∗ ⊗ u (λ)) = λc

∗ = m (u (λ)⊗ c
∗) for all c∗ ∈ C

∗. Note that f : λ �→ f
∗
λ

where f
∗
λ
(a) = λa, so we have for all c ∈ C

�m (c∗ ⊗ u (λ)) , c� = �∆∗
ρ (c∗ ⊗ u (λ)) , c�

= �ρ (c∗ ⊗ u (λ)) ,∆c�
=

�

(c)

�
ρ (c∗ ⊗ �f

∗
λ
) , c(1) ⊗ c(2)

�

=
�

(c)

�
c
∗
, c(1)

� �
�f

∗
λ
, c(2)

�

=
�

(c)

�
c
∗
, c(1)

�
�
�
λc(2)

�

=

�
λc

∗
,

�

(c)

c(1)�
�
c(2)

�
�

= �λc∗, c�

so m (c∗ ⊗ µ (λ)) = λc
∗. Similarly, it can be shown that m (µ (λ)⊗ c

∗) = λc
∗. �

Problem 4

Lemma. If X is a subspace of V and
n�

i=1

vi ⊗ wi ∈ X ⊗X
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where vi ∈ V are non-zero and wi ∈ V are linearly independent, then all the wi’s are elements of X. The same is
true if we switch the left and right sides of the tensor. Therefore, if {vi} and {wi} are both linearly independent,
then both sets are contained in X.

Proof. Let {xi}i∈I
be a basis for X so that there exist βij ∈ F such that

n�

k=1

vk ⊗ wk =
�

i,j∈I

βijxi ⊗ xj ∈ X ⊗X.

If all the wk’s are in X, we are done; so instead suppose that some nonempty subset of them are outside of X. We
can then move then tensors from the left-hand side of the equation for which wk ∈ X to the right side, and have
them be absorbed into the other sum. That is, if

wk =
�

j∈I

λ
(k)
j

xj , for wk ∈ X

then
�

k, wk /∈X

vk ⊗ wk =
�

i,j∈I

βijxi ⊗ xj −
�

k, wk∈X

vk ⊗ wk

=
�

i,j∈I

βijxi ⊗ xj −
�

k, wk∈X

vk ⊗
�

j∈I

λ
(k)
j

xj

=
�

j∈I

�
�

i∈I

βijxi

�
⊗ xj −

�

j∈I




�

k, wk∈X

λ
(k)
j

vk



⊗ xj

=
�

j∈I




�

i∈I

βijxi −
�

k, wk∈X

λ
(k)
j

vk



⊗ xj .

We can subtract the beginning from the end to get

0 =
�

j∈I




�

i∈I

βijxi −
�

k, wk∈X

λ
(k)
j

vk



⊗ xj −
�

k, wk /∈X

vk ⊗ wk

but since the set {wk : wk /∈ X} ∪ {xj}j∈I
is linearly independent, all the left-hand sides of the tensors must be

zero, a contradiction since none of the vk’s are zero. Thus, all of the wk’s are inside of X. The proof is identical for
the case in which the linearly independent elements are on the left instead of the right. And of course if they’re on
both sides the proof can be applied twice to show that all of the elements are in X. �

Proposition. All the non-trivial subpsaces {FV : V ⊆ S, V �= ∅} are subcoalgebras of �FS,∆, �� with the inherited
operations.

Proof. First, they are all co-algebras as they are of the form FV where V is a set with ∆FV (v) = v ⊗ v and
�FV (v) = 1, for all v ∈ V , and these operations are inherited as restrictions of ∆ and � to FV .

To show they are the only subcoalgebras contained in FS, it is only necessary to show that for any subalgebra
X ⊆ FS, there exists S

� ⊆ S such that FS� = X.
Let {xi}i∈I

be a basis for X so that

xi =
�

s∈S�

λ
(i)
s
s

is the expansion of xi in terms of the elements of S� ⊆ S, the smallet subset of S needed to write out the xi’s so
that for some s ∈ S

� not all λ(i)
s = 0. So far we know that X ⊆ FS�.

Let’s show inclusion in the other direction. The coproduct ∆X : X → X ⊗ X is inherited from the coproduct
∆ : FS → FS ⊗ FS so that ∆X (x) = ∆ (x); thus,

∆X (xi) = ∆ (xi)

= ∆
�

s∈S

λ
(i)
s
s

=
�

s∈S�

λ
(i)
s
s⊗ s ∈ X ⊗X.
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By the preceeding lemma, this means all of the s ∈ S
� for which λ

(i)
s �= 0 are in X. Since for all s ∈ S

�, there exists
some j ∈ I such that λ

(i)
s �= 0, then all s ∈ S

� are in X. So FS� ⊆ X.
Ergo, FS� = X. �

Problem 5A

There are at least three statements to prove here. First, the poset of ideals of I (P ) is isomorphic to the poset
of subcoalgebras of the incidence coalgebras of P ordered by reverse containment. Second, the subcoalgebras of P
is all have a nice basis which is a subset of Int (P ); this is an isomorphism also. Third, the poset of these bases is
isomorphic to J

o (Int (P )). We will take these in order, but first, let’s set the notation:
• Let (C,∆, �) be the incidence coalgebra of P so that (C∗

,m, µ) = I (P ) . Note that FInt (P ) = C.
• Let (Ideals (I (P )) ,⊂) be the poset of ideals of I (P ).
• Let (SubCo (C) ,⊃) be the poset of subcoalgebras of C.
• Let (B (SubCo (C)) ,⊃) be the poset of bases of subcoalgebras of C, which are subsets of Int (P ).
• Abusing notation in favor of continuity, we’ll let (Jo (Int (P )) ,⊃) be the poset J

o (Int (P )) ordered by
reverse containment.

Proposition. (Ideals (I (P )) ,⊂) ∼= (SubCo (P ) ,⊃)

Proof. We already that a bijection exists between these sets, namely f : V ∗ → (V ∗)⊥; in fact, this function is its
own inverse. Now, we must show that f is an order-preserving (well, reversing) map. Let A

∗
, B

∗ ∈ Ideals (I (P )),
and suppose A

∗ ⊆ B
∗. Then if x ∈ (B∗)⊥ we have �B∗

, x� = 0. Since A
∗ is just a subset of B∗, then �A∗

, x� = 0,
so x ∈ (A∗)⊥, and thus (A∗)⊥ ⊇ (B∗)⊥. �

Proposition. (SubCo (P ) ,⊃) ∼= (B (SubCo (P )) ,⊃)

Every subcoalgebra from SubCo (P ) has unique basis composed of individual intervals from Int (P ), and this is
shown in a way almost identical to that of the last exercise. Consider any subcoalgebra X ⊆ C, which has as a
basis {xi}i∈I

for which

xi =
�

[x,y]∈S�

λ
(i)
[x,y] [x, y]

where S
� is the smallest subset of Int (P ) required to write out the xi’s. Then if we

∆X (xi) = ∆ (xi)

=
�

[x,y]∈S�

λ
(i)
[x,y]∆s

=
�

[x,y]∈S�

λ
(i)
[x,y]

�

x≤z≤y

[x, z]⊗ [x, y]

=
�

[z,y]∈S�




�

[x,y]∈S
�

x≤z

λ
(i)
[x,y] [x, z]



⊗ [z, y]

By applying the Lemma from Problem 4, we see that the intervals [z, y] ∈ S
� are in X as long as λ

(i)
[x,y] for all the

intervals [x, y] of which [z, y] is a part are not zero. Fortunately, for every [x, y] there must be at least one value of
i for which λ

(i)
[x,y] �= 0, otherwise [x, y] wouldn’t be in S

�. So we have SubCo (P ) = FS� as desired.
Any vector space can be identified by its basis, so the map

ϕ : SubCo (P ) → B (SubCo (P ))

V �→ B (V ) = {x ∈ Int (P ) : x ∈ V }

is naturally bijective (the inverse is the Span function). The fact that all the bases come from one set, Int (P ),
show that if V,W ∈ SubCo (P ) and V ⊆ W , then if x ∈ B (V ), then x ∈ V ⊆ W , and since x ∈ Int (P ), then
x ∈ B (W ) , so B (V ) ⊆ B (W ).

Proposition. (B (SubCo (P )) ,⊃) = (Jo (Int (P )) ,⊃)


