(2) (a) Let $T: C \otimes C \to C \otimes C$ be the *twist* map given by $T(c \otimes d) = d \otimes c$ for $c, d \in C$. Show that T is a bilinear map and write $T\Delta(c)$ in Sweedler notation.

Proof. We begin by defining \tilde{T} a bilinear map from $C \times C \to C \otimes C$ by defining \tilde{T} on the basis elements of $C \times C$ and extending linearly. For c_i, c_j basis elements of C, define $\tilde{T}(c_i, c_j) = c_j \otimes c_i$. Then moding out by the relations of $C \otimes C$, \tilde{T} induces a linear map $T : C \otimes C \to C \otimes C$ by $T(c \otimes d) = d \otimes c$ for all pure tensors $c \otimes d \in C \otimes C$, and extending linearly over sums. In Sweedler notation, we write

$$T\Delta(c) = T \sum_{(c)} c_{(1)} \otimes c_{(2)}$$
$$= \sum_{(c)} T(c_{(1)} ox c_{(2)})$$
$$= \sum_{(c)} c_{(2)} \otimes c_{(1)}$$

	-	
	1	
	L	
	L	
	L	

(b) Prove the following identities:

(i)
$$\Delta(c) = \sum_{(c)} \epsilon(c_{(2)}) \otimes \Delta(c_{(1)})$$

Proof. We begin by proving a lemma.

Lemma 1. For linear functions $f : C \to C$ and $g : C \to C$, $T \circ (f \otimes g) = (g \otimes f) \circ T$. Proof of lemma: Let $\sum_{i} x_i \otimes y_i \in C \otimes C$. Then by linearity of T f and g,

$$T \circ (f \otimes g) \left(\sum_{i} x_{i} \otimes y_{i} \right) = T \circ \left(\sum_{i} f(x_{i}) \otimes g(y_{i}) \right)$$
$$= \sum_{i} T(f(x_{i}) \otimes g(y_{i}))$$
$$= \sum_{i} (g(y_{i}) \otimes f(x_{i}))$$
$$= \sum_{i} (g \otimes f)(y_{i} \otimes x_{i})$$
$$= \sum_{i} (g \otimes f) \circ T(x_{i} \otimes y_{i})$$
$$= (f \otimes g) \circ T \left(\sum_{i} x_{i} \otimes y_{i} \right).$$

	-	-	-	
1				
1				
L			_	

$$\sum_{(c)} \epsilon(c_{(2)}) \otimes \Delta(c_{(1)})$$

$$= \sum_{(c)} (\epsilon \otimes \Delta)(c_{(2)} \otimes c_{(1)})$$

$$= (\epsilon \otimes \Delta)T(\Delta(c))$$

$$= (I \otimes \Delta)(\epsilon \otimes I)T(\Delta(c))$$

$$= (I \otimes \Delta)T(I \otimes \epsilon)(\Delta(c)) \quad by \ Lemma \ 1,$$

$$= (I \otimes \Delta)T(c \otimes 1) \quad by \ the \ counitary \ property,$$

$$= (I \otimes \Delta)(1 \otimes c)$$

$$= 1 \otimes \Delta(c)$$

$$\cong \Delta(c).$$

(ii) $\Delta(c) = \sum_{(c)} c_{(1)} \otimes \epsilon(c_{(3)}) \otimes c_{(2)}$

Proof.

$$\sum_{(c)} c_{(1)} \otimes \epsilon(c_{(3)}) \otimes c_{(2)}$$

$$= (I \otimes \epsilon \otimes I) \sum_{(c)} c_{(1)} \otimes c_{(3)} \otimes c_{(2)}$$

$$= (I \otimes \epsilon \otimes I)(I \otimes T)\Delta_2(c)$$

$$= (I \otimes T)(I \otimes I \otimes \epsilon)(I \otimes \Delta)\Delta(c) \quad by \ Lemma \ 1,$$

$$= (I \otimes T)(I \otimes ((I \otimes \epsilon) \circ \Delta))\Delta(c)$$

$$= (I \otimes T) \sum_{(c)} c_{(1)} \otimes c_{(2)} \otimes 1 \quad by \ the \ counitary \ property,$$

$$= \sum_{(c)} c_{(1)} \otimes 1 \otimes c_{(2)}$$

$$\cong \Delta(c).$$

(iii)
$$c = \sum_{(c)} \epsilon(c_{(1)}) \otimes \epsilon(c_{(3)}) \otimes c_{(2)}$$

Proof:
 $\sum_{(c)} \epsilon(c_{(1)}) \otimes \epsilon(c_{(3)}) \otimes c_{(2)}$
 $= (\epsilon \otimes \epsilon \otimes I) \sum_{(c)} c_{(1)} \otimes c_{(3)} \otimes c_{(2)}$
 $= (\epsilon \otimes \epsilon \otimes I)(I \otimes T) \sum_{(c)} c_{(1)} \otimes c_{(2)} \otimes c_{(3)}$
 $= (\epsilon \otimes \epsilon \otimes I)(I \otimes T) \Delta_2(c)$
 $= (I \otimes T)(\epsilon \otimes I \otimes \epsilon)(I \otimes \Delta)\Delta(c)$ by Lemma 1,
 $= (I \otimes T)(\epsilon \otimes ((I \otimes \epsilon) \circ \Delta)\Delta(c))$
 $= (I \otimes T)(\epsilon \otimes ((I \otimes \epsilon) \circ \Delta)\Delta(c))$
 $= (I \otimes T)(\epsilon \otimes I \otimes I)(\Delta(c) \otimes 1)$
 $= (I \otimes T)(\epsilon \otimes I) \otimes \Delta \otimes I)(c \otimes 1)$
 $= (I \otimes T)((\epsilon \otimes I) \circ \Delta \otimes I)(c \otimes 1)$
 $= (I \otimes T)(1 \otimes c \otimes 1)$
 $= 1 \otimes 1 \otimes c$
 $\cong c.$

counitary property,