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Problem 0.
How prepared do you feel to do research in mathematics?
One of my biggest regrets in my education is not doing research in my undergraduate career. Because I did
not come to this program with research experience as many of my peers did, I often lose confidence in my
preparedness for research. But putting these doubts aside, I feel ready, and am excited to do research in
mathematics. I have a good foundation that I believe will support me through research. At this point I know
that I need to dive right in and get my hands dirty in the math.

What are your mathematical plans after graduation?
After graduating from the MA program (expected May 2013), I hope to begin a math PhD in Fall 2013. My
husband and I will be applying to PhD programs at the same time (though his field is in history/american
studies) with the goal of attending programs at the same school. I’m excited about studying mathematics and
figure I might as well do it for the rest of my life.

Problem 1. Consider the F-algebra H4 generated by the indeterminates g and x subject to the relations g2 = 1,
x2 = 0, and xg =−gx. Prove that the coproduct given by ∆g = g⊗g and ∆x = x⊗1+g⊗ x and the counit
given by ε(g) = 1 and ε(x) = 0 turn H4 into a bialgebra.

Solution. Crista Moreno, Karla Lanzas
H = H4 is an F-algebra so it has multiplication m : H⊗H→ H and unit u : F→ H such that the following
diagrams commute:

H⊗H⊗H m⊗id //

id⊗m
��

H⊗H

m
��

H⊗H

m
��

H⊗H m
// H F⊗H

u⊗id
::

∼=
// H H⊗F∼=
oo

id⊗u
dd

Consider the coproduct ∆ : H → H ⊗H given by ∆(g) = g⊗ g and ∆(x) = x⊗ 1+ g⊗ x and the counit
ε : H→ F given by ε(g) = 1 and ε(x) = 0. We can extend ∆ so that ∆(1) = 1 and ∆(gx) = gx⊗g+1⊗gx.
We see that ∆ is multiplicative relative to the basis relations:

∆(g2) = ∆(g)∆(g) = (g⊗g)(g⊗g) = g2⊗g2 = 1⊗1 = ∆(1)

∆(x2) = ∆(x)∆(x) = (x⊗1+g⊗ x)(x⊗1+g⊗ x)

= x2⊗1+ xg⊗ x+gx⊗ x+g2⊗ x2

=−(gx⊗ x)+gx⊗ x = 0 = ∆(0)

1



∆(gx) = ∆(g)∆(x) = (g⊗g)(x⊗1+g⊗ x)

= gx⊗g+1⊗gx =−xg⊗g+1⊗−xg

=−(xg⊗g)− (1⊗ xg)

=−(x⊗1+g⊗ x)(g⊗g) =−∆(x)∆(g) = ∆(−xg)

Similarly, we extend ε so that ε(1) = 1 and ε(gx) = 0 and we see that ε is multiplicative relative to the basis
relations:

ε(g2) = ε(g)ε(g) = 1 ·1 = 1 = ε(1)

ε(x2) = ε(x)ε(x) = 0 ·0 = 0 = ε(x)

ε(gx) = ε(g)ε(x) = 1 ·0 = 0 =−0 ·1 =−ε(x)ε(g) = ε(−xg)

Now that we have ∆ and ε maps defined on the basis of H that preserve the given relations, in order to
make H a coalgebra, we need the following diagrams to commute:

H⊗H⊗H H⊗Hid⊗∆oo H⊗H
id⊗ε

$$

ε⊗id

zz
H⊗H

∆⊗id

OO

H
∆

oo

∆

OO

F⊗H H∼=
oo

∆

OO

∼=
// H⊗F

We can observe how each diagram acts on each element of the basis {1,g,x,gx} of H:
1:

(id⊗∆)∆(1) = (id⊗∆)(1⊗1) = 1⊗ (1⊗1)

= (1⊗1)⊗1 = ∆(1)⊗1

= (∆⊗ id)∆(1)

(ε⊗ id)∆(1) = (ε⊗ id)(1⊗1) = ε(1)⊗1∼= 1

(id⊗ ε)∆(1) = (id⊗ ε)(1⊗1) = 1⊗ ε(1) = 1⊗1∼= 1

g :

(id⊗∆)∆(g) = (id⊗∆)(g⊗g) = g⊗ (g⊗g)

= (g⊗g)⊗g = ∆(g)⊗g

= (∆⊗ id)∆(g)

(ε⊗ id)∆(g) = (ε⊗ id)(g⊗g) = ε(g)⊗g = 1⊗g∼= g

(id⊗ ε)∆(g) = (id⊗ ε)(g⊗g) = g⊗ ε(g) = g⊗1∼= g
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x:

(id⊗∆)∆(x) = (id⊗∆)(x⊗1+g⊗ x) = x⊗∆(1)+g⊗∆(x)

= x⊗ (1⊗1)+g⊗ (x⊗1+g⊗ x) = x⊗1⊗1+g⊗ x⊗1+g⊗g⊗ x

= (x⊗1+g⊗ x)⊗1+(g⊗g)⊗ x = ∆(x)⊗1+∆(g)⊗ x

= (∆⊗ id)(x⊗1+g⊗ x)

= (∆⊗ id)∆(x)

(ε⊗ id)∆(x) = (ε⊗ id)(x⊗1+g⊗ x) = ε(x)⊗1+ ε(g)⊗ x

= 0⊗1+1⊗ x = 1⊗ x∼= x

(id⊗ ε)∆(x) = (id⊗ ε)(x⊗1+g⊗ x) = x⊗ ε(1)+g⊗ ε(x)

= x⊗1+g⊗0 = x⊗1∼= x

gx:

(id⊗∆)∆(gx) = (id⊗∆)(gx⊗g+1⊗gx) = gx⊗∆(g)+1⊗∆(gx)

= gx⊗ (g⊗g)+1⊗ (gx⊗g+1⊗gx)

= gx⊗g⊗g+1⊗gx⊗g+1⊗1⊗gx

= (gx⊗g+1⊗gx)⊗g+(1⊗1)⊗gx

= ∆(gx)⊗g+∆(1)⊗gx = (∆⊗ id)(gx⊗g+1⊗gx)

= (∆⊗ id)∆(gx)

(ε⊗ id)∆(gx) = (ε⊗ id)(gx⊗g+1⊗gx) = ε(gx)⊗g+ ε(1)⊗gx)

= 0⊗g+1⊗gx = 1⊗gx∼= gx

(id⊗ ε)∆(gx) = (id⊗ ε)(gx⊗g+1⊗gx) = gx⊗ ε(g)+ x⊗ ε(gx)

= gx⊗1+ x⊗0 = gx⊗1∼= gx

Hence the coassociative and conunitary maps commute for the basis elements. Therefore (H,∆,ε) is a
coalgebra.

In order for H to be a bialgebra, we need ∆ and ε to be algebra maps. That is we must show the following
four diagrams commute:

H⊗H m //

∆⊗∆

��

H ∆ // H⊗H

H⊗H⊗H⊗H id⊗T⊗id // H⊗H⊗H⊗H

m⊗m

OO

H⊗H ε⊗ε //

m
��

K⊗K

��
H ε // K

H ∆ // H⊗H

K

u

OO

// K⊗K

u⊗u

OO
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H
ε

  
K

u
>>

id // K
We can observe that the first map commutes the 16 basis elements of H⊗H with the following computa-

tions:

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(1⊗1) = (m⊗m)(id⊗T ⊗ id)(1⊗1⊗1⊗1)

= (m⊗m)(1⊗1⊗1⊗1) = 1⊗1 = ∆(1)

= ∆m(1⊗1)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(1⊗g) = (m⊗m)(id⊗T ⊗ id)(1⊗1⊗g⊗g)

= (m⊗m)(1⊗g⊗1⊗g) = g⊗g = ∆(g)

= ∆m(1⊗g)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(1⊗ x) = (m⊗m)(id⊗T ⊗ id)((1⊗1)⊗ (x⊗1+g⊗ x))

= (m⊗m)(id⊗T ⊗ id)((1⊗1⊗ x⊗1)+(1⊗1⊗g⊗ x))

= (m⊗m)(1⊗ x⊗1⊗1+1⊗g⊗1⊗ x) = x⊗1+g⊗ x = ∆(x)

= ∆m(1⊗ x)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(1⊗gx) = (m⊗m)(id⊗T ⊗ id)((1⊗1)⊗ (gx⊗g+1⊗gx))

= (m⊗m)(id⊗T ⊗ id)((1⊗1⊗gx⊗g)+(1⊗1⊗1⊗gx))

= (m⊗m)(1⊗gx⊗1⊗g+1⊗1⊗1⊗gx) = gx⊗g+1⊗gx = ∆(gx)

= ∆m(1⊗gx)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(g⊗1) = (m⊗m)(id⊗T ⊗ id)(g⊗g⊗1⊗1)

= (m⊗m)(g⊗1⊗g⊗1) = g⊗g = ∆(g)

= ∆m(g⊗1)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(g⊗g) = (m⊗m)(id⊗T ⊗ id)(g⊗g⊗g⊗g)

= (m⊗m)(g⊗g⊗g⊗g) = 1⊗1 = ∆(1)

= ∆m(g⊗g)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(g⊗ x) = (m⊗m)(id⊗T ⊗ id)((g⊗g)⊗ (x⊗1+g⊗ x))

= (m⊗m)(id⊗T ⊗ id)(g⊗g⊗ x⊗1+g⊗g⊗g⊗ x)

= (m⊗m)(g⊗ x⊗g⊗1+g⊗g⊗g⊗ x) = gx⊗g+1⊗gx = ∆(gx)

= ∆m(g⊗ x)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(g⊗gx) = (m⊗m)(id⊗T ⊗ id)((g⊗g)⊗ (gx⊗g+1⊗gx))

= (m⊗m)(id⊗T ⊗ id)(g⊗g⊗gx⊗g+g⊗g⊗1⊗gx)

= (m⊗m)(g⊗gx⊗g⊗g+g⊗1⊗g⊗gx) = x⊗1+g⊗ x = ∆(x)

= ∆m(g⊗gx)

4



(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(x⊗1) = (m⊗m)(id⊗T ⊗ id)((x⊗1+g⊗ x)⊗1⊗1)

= (m⊗m)(id⊗T ⊗ id)(x⊗1⊗1⊗1+g⊗ x⊗1⊗1

= (m⊗m)(x⊗1⊗1⊗1+g⊗1⊗ x⊗1) = x⊗1+g⊗ x = ∆(x)

= ∆m(x⊗1)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(x⊗g) = (m⊗m)(id⊗T ⊗ id)((x⊗1+g⊗ x)⊗g⊗g)

= (m⊗m)(id⊗T ⊗ id)(x⊗1⊗g⊗g+g⊗ x⊗g⊗g

= (m⊗m)(x⊗g⊗1⊗g+g⊗g⊗ x⊗g) = xg⊗g+1⊗ xg = ∆(xg)

= ∆m(x⊗g)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(x⊗ x) = (m⊗m)(id⊗T ⊗ id)((x⊗1+g⊗ x)⊗ (x⊗1+g⊗ x)

= (m⊗m)(id⊗T ⊗ id)(x⊗1⊗ x⊗1+ x⊗1⊗g⊗ x+g⊗ x⊗ x⊗1+g⊗ x⊗g⊗ x)

= (m⊗m)(x⊗ x⊗1⊗1+ x⊗g⊗1⊗ x+g⊗ x⊗ x⊗1+g⊗g⊗ x⊗ x)

= 0⊗1+ xg⊗ x+gx⊗ x+1⊗0 =−gx⊗ x+gx⊗ x = ∆(0)

= ∆m(x⊗ x)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(x⊗gx) = (m⊗m)(id⊗T ⊗ id)((x⊗1+g⊗ x)⊗ (gx⊗g+1⊗gx)

= (m⊗m)(id⊗T ⊗ id)(x⊗1⊗gx⊗g+ x⊗1⊗1⊗gx+g⊗ x⊗gx⊗g

+g⊗ x⊗1⊗gx)

= (m⊗m)(x⊗gx⊗1⊗g+ x⊗1⊗1⊗gx+g⊗gx⊗ x⊗g+g⊗1⊗ x⊗gx)

= 0⊗g+ x⊗gx+ x⊗ xg+g⊗0 = x⊗gx− x⊗gx = ∆(0)

= ∆m(x⊗gx)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(gx⊗1) = (m⊗m)(id⊗T ⊗ id)((gx⊗g+1⊗gx)⊗1⊗1)

= (m⊗m)(id⊗T ⊗ id)(gx⊗g⊗1⊗1+1⊗gx⊗1⊗1

= (m⊗m)(gx⊗1⊗g⊗1+1⊗1⊗gx⊗1) = gx⊗g+1⊗gx = ∆(gx)

= ∆m(gx⊗1)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(gx⊗g) = (m⊗m)(id⊗T ⊗ id)((gx⊗g+1⊗gx)⊗g⊗g)

= (m⊗m)(id⊗T ⊗ id)(gx⊗g⊗g⊗g+1⊗gx⊗g⊗g

= (m⊗m)(gx⊗g⊗g⊗g+1⊗g⊗gx⊗g) = gxg⊗g+g⊗gxg = ∆(gxg)

= ∆m(gx⊗g)

(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(gx⊗ x) = (m⊗m)(id⊗T ⊗ id)((gx⊗g+1⊗gx)⊗ x⊗1+g⊗ x)

= (m⊗m)(id⊗T ⊗ id)(gx⊗g⊗ x⊗1+gx⊗g⊗g⊗ x+1⊗gx⊗ x⊗1

+1⊗gx⊗g⊗ x

= (m⊗m)(gx⊗ x⊗g⊗1+gx⊗g⊗g⊗1+1⊗ x⊗gx⊗1+1⊗g⊗gx⊗ x)

= 0⊗g+−x⊗g+ x⊗gx+g⊗0 = ∆(0)

= ∆m(gx⊗g)
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(m⊗m)(id⊗T ⊗ id)(∆⊗∆)(gx⊗gx) = (m⊗m)(id⊗T ⊗ id)((gx⊗g+1⊗gx)⊗gx⊗g+1⊗gx)

= (m⊗m)(id⊗T ⊗ id)(gx⊗g⊗gx⊗g+gx⊗g⊗1⊗gx+1⊗gx⊗gx⊗g

+1⊗gx⊗1⊗gx

= (m⊗m)(gx⊗gx⊗g⊗g+gx⊗1⊗g⊗gx+1⊗gx⊗gx⊗g+1⊗1⊗gx⊗gx)

= 0⊗1+gx⊗ x+gx⊗−x+1⊗0 = ∆(0)

= ∆m(gx⊗gx)

Hence, m and ∆ are compatible. Now we observe the second map commutes with the 16 basis elements of
H⊗H with the following computations:

(ε⊗ ε)(1⊗1) = (ε(1)⊗ ε(1)) = 1⊗1∼= 1 = ε(1) = ε ◦m(1⊗1)

(ε⊗ ε)(1⊗g) = (ε(1)⊗ ε(g)) = 1⊗1∼= 1 = ε(g) = ε ◦m(1⊗g)

(ε⊗ ε)(1⊗ x) = (ε(1)⊗ ε(x)) = 1⊗0∼= 0 = ε(x) = ε ◦m(1⊗ x)

(ε⊗ ε)(1⊗gx) = (ε(1)⊗ ε(gx)) = 1⊗0∼= 0 = ε(gx) = ε ◦m(1⊗gx)

(ε⊗ ε)(g⊗1) = (ε(g)⊗ ε(1)) = 1⊗1∼= 1 = ε(g) = ε ◦m(g⊗1)

(ε⊗ ε)(g⊗g) = (ε(g)⊗ ε(g)) = 1⊗1∼= 1 = ε(g2) = ε ◦m(g⊗g)

(ε⊗ ε)(g⊗ x) = (ε(g)⊗ ε(x)) = 1⊗0∼= 0 = ε(gx) = ε ◦m(g⊗ x)

(ε⊗ ε)(g⊗gx) = (ε(g)⊗ ε(gx)) = 1⊗0∼= 0 = ε(x) = ε ◦m(g⊗gx)

(ε⊗ ε)(x⊗1) = (ε(x)⊗ ε(1)) = 0⊗1∼= 0 = ε(x) = ε ◦m(x⊗1)

(ε⊗ ε)(x⊗g) = (ε(x)⊗ ε(g)) = 0⊗1∼= 0 = ε(xg) = ε ◦m(x⊗g)

(ε⊗ ε)(x⊗ x) = (ε(x)⊗ ε(x)) = 0⊗0∼= 0 = ε(x2) = ε ◦m(x⊗ x)

(ε⊗ ε)(x⊗ xg) = (ε(x)⊗ ε(xg)) = 0⊗0∼= 0 = ε(xxg) = ε ◦m(x⊗ xg)

(ε⊗ ε)(gx⊗1) = (ε(gx)⊗ ε(1)) = 0⊗1∼= 0 = ε(gx) = ε ◦m(gx⊗1)

(ε⊗ ε)(gx⊗g) = (ε(gx)⊗ ε(g)) = 0⊗1∼= 0 = ε(gxg) = ε ◦m(gx⊗1)

(ε⊗ ε)(gx⊗ x) = (ε(gx)⊗ ε(x)) = 0⊗0∼= 0 = ε(gx2) = ε ◦m(gx⊗ x)

6



(ε⊗ ε)(gx⊗gx) = (ε(gx)⊗ ε(gx)) = 0⊗0∼= 0 = ε((gx)2) = ε ◦m(gx⊗gx)

Hence, ε and m are compatible. Now we observe the third map commutes for any element λ ∈K :

∆◦u(λ ) = λ (∆◦u(1K)) = λ (∆(1)) = λ (1⊗1)

= (u⊗u)(λ (1K⊗1K)) = (u⊗u)(λ ⊗1K)

note: λ ⊗1K ∼= λ

Hence, u and ∆ are compatible. Finally, we observe the fourth map commutes for any element λ ∈K :

ε(u(λ )) = λ (ε(u(1K))) = λ (ε(1)) = λ (1K)

= λ

Hence, ε and u are compabtible. We have that all four diagmrams commute so (H,m,u,∆,ε) is a bialgebra.

Problem 2.

(a) Let T : C⊗C→ C⊗C be the twist map given by T (c⊗ d) = d⊗ c for c,d ∈ C. Write T ∆(c) in
Sweedler notation.

(b) Prove the following identities:

i. ∆(c) = ∑
(c)

ε(c(2))⊗∆(c(1))

ii. ∆(c) = ∑
(c)

c(1)⊗ ε(c(3))⊗ c(2)

iii. c = ∑
(c)

ε(c(1))⊗ ε(c(3))⊗ c(2)

Solution. Crista Moreno, Karla Lanzas, Nina Cerutti

(a) First consider the map T̄ : C×C→C⊗C where T̄ (c,d) = d⊗ c. We can show this map is bilinear.
For c1,c2,d1,d2 ∈C,

T̄ (c1 + c2,d1) = d1⊗ (c1 + c2) = d1⊗ c1 +d1⊗ c2 = T̄ (c1,d1)+ T̄ (c2,d1)

T̄ (c1,d1 +d2) = (d1 +d2)⊗ c1 = d1⊗ c1 +d2⊗ c1 = T̄ (c1,d1)+ T̄ (c1,d2)

T̄ descends to the linear map T : C⊗C→C⊗C where T (c⊗d) = d⊗ c. Then we can write T ∆(c) as

T ∆(C) = T ∑
(c)

c(1)⊗ c(2) = ∑
(c)

T (c(1)⊗ c(2))

= ∑
(c)

c(2)⊗ c(1)

(b)i. ∆c = ∑
(c)

ε(c(2))⊗∆(c(1))

proof
We can define maps f : C×C→C⊗C with f (c,d) = ∆(cε(d)) and g : C×C→C with g(c,d) = cε(d).
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