Solution. Crista Moreno, Karla Lanzas

$H=H_{4}$ is an \mathbb{F}-algebra so it has multiplication $m: H \otimes H \rightarrow H$ and unit $u: \mathbb{F} \rightarrow H$ such that the following diagrams commute:

Consider the coproduct $\Delta: H \rightarrow H \otimes H$ given by $\Delta(g)=g \otimes g$ and $\Delta(x)=x \otimes 1+g \otimes x$ and the counit $\varepsilon: H \rightarrow \mathbb{F}$ given by $\varepsilon(g)=1$ and $\varepsilon(x)=0$. We can extend Δ so that $\Delta(1)=1$ and $\Delta(g x)=g x \otimes g+1 \otimes g x$. We see that Δ is multiplicative relative to the basis relations:

$$
\begin{aligned}
& \Delta\left(g^{2}\right)=\Delta(g) \Delta(g)=(g \otimes g)(g \otimes g)=g^{2} \otimes g^{2}=1 \otimes 1=\Delta(1) \\
& \begin{aligned}
\Delta\left(x^{2}\right) & =\Delta(x) \Delta(x)=(x \otimes 1+g \otimes x)(x \otimes 1+g \otimes x) \\
& =x^{2} \otimes 1+x g \otimes x+g x \otimes x+g^{2} \otimes x^{2} \\
& =-(g x \otimes x)+g x \otimes x=0=\Delta(0)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\Delta(g x) & =\Delta(g) \Delta(x)=(g \otimes g)(x \otimes 1+g \otimes x) \\
& =g x \otimes g+1 \otimes g x=-x g \otimes g+1 \otimes-x g \\
& =-(x g \otimes g)-(1 \otimes x g) \\
& =-(x \otimes 1+g \otimes x)(g \otimes g)=-\Delta(x) \Delta(g)=\Delta(-x g)
\end{aligned}
$$

Similarly, we extend ε so that $\varepsilon(1)=1$ and $\varepsilon(g x)=0$ and we see that ε is multiplicative relative to the basis relations:

$$
\begin{gathered}
\varepsilon\left(g^{2}\right)=\varepsilon(g) \varepsilon(g)=1 \cdot 1=1=\varepsilon(1) \\
\varepsilon\left(x^{2}\right)=\varepsilon(x) \varepsilon(x)=0 \cdot 0=0=\varepsilon(x) \\
\varepsilon(g x)=\varepsilon(g) \varepsilon(x)=1 \cdot 0=0=-0 \cdot 1=-\varepsilon(x) \varepsilon(g)=\varepsilon(-x g)
\end{gathered}
$$

Now that we have Δ and ε maps defined on the basis of H that preserve the given relations, in order to make H a coalgebra, we need the following diagrams to commute:

We can observe how each diagram acts on each element of the basis $\{1, g, x, g x\}$ of H : 1:

$$
\begin{aligned}
(i d \otimes \Delta) \Delta(1) & =(i d \otimes \Delta)(1 \otimes 1)=1 \otimes(1 \otimes 1) \\
& =(1 \otimes 1) \otimes 1=\Delta(1) \otimes 1 \\
& =(\Delta \otimes i d) \Delta(1) \\
(\varepsilon \otimes i d) \Delta(1) & =(\varepsilon \otimes i d)(1 \otimes 1)=\varepsilon(1) \otimes 1 \cong 1 \\
(i d \otimes \varepsilon) \Delta(1) & =(i d \otimes \varepsilon)(1 \otimes 1)=1 \otimes \varepsilon(1)=1 \otimes 1 \cong 1
\end{aligned}
$$

$g:$

$$
\begin{aligned}
(i d \otimes \Delta) \Delta(g) & =(i d \otimes \Delta)(g \otimes g)=g \otimes(g \otimes g) \\
& =(g \otimes g) \otimes g=\Delta(g) \otimes g \\
& =(\Delta \otimes i d) \Delta(g) \\
(\varepsilon \otimes i d) \Delta(g) & =(\varepsilon \otimes i d)(g \otimes g)=\varepsilon(g) \otimes g=1 \otimes g \cong g \\
(i d \otimes \varepsilon) \Delta(g) & =(i d \otimes \varepsilon)(g \otimes g)=g \otimes \varepsilon(g)=g \otimes 1 \cong g
\end{aligned}
$$

x :

$$
\begin{aligned}
(i d \otimes \Delta) \Delta(x) & =(i d \otimes \Delta)(x \otimes 1+g \otimes x)=x \otimes \Delta(1)+g \otimes \Delta(x) \\
& =x \otimes(1 \otimes 1)+g \otimes(x \otimes 1+g \otimes x)=x \otimes 1 \otimes 1+g \otimes x \otimes 1+g \otimes g \otimes x \\
& =(x \otimes 1+g \otimes x) \otimes 1+(g \otimes g) \otimes x=\Delta(x) \otimes 1+\Delta(g) \otimes x \\
& =(\Delta \otimes i d)(x \otimes 1+g \otimes x) \\
& =(\Delta \otimes i d) \Delta(x) \\
(\varepsilon \otimes i d) \Delta(x) & =(\varepsilon \otimes i d)(x \otimes 1+g \otimes x)=\varepsilon(x) \otimes 1+\varepsilon(g) \otimes x \\
& =0 \otimes 1+1 \otimes x=1 \otimes x \cong x \\
(i d \otimes \varepsilon) \Delta(x) & =(i d \otimes \varepsilon)(x \otimes 1+g \otimes x)=x \otimes \varepsilon(1)+g \otimes \varepsilon(x) \\
& =x \otimes 1+g \otimes 0=x \otimes 1 \cong x
\end{aligned}
$$

$g x:$

$$
\begin{aligned}
(i d \otimes \Delta) \Delta(g x) & =(i d \otimes \Delta)(g x \otimes g+1 \otimes g x)=g x \otimes \Delta(g)+1 \otimes \Delta(g x) \\
& =g x \otimes(g \otimes g)+1 \otimes(g x \otimes g+1 \otimes g x) \\
& =g x \otimes g \otimes g+1 \otimes g x \otimes g+1 \otimes 1 \otimes g x \\
& =(g x \otimes g+1 \otimes g x) \otimes g+(1 \otimes 1) \otimes g x \\
& =\Delta(g x) \otimes g+\Delta(1) \otimes g x=(\Delta \otimes i d)(g x \otimes g+1 \otimes g x) \\
& =(\Delta \otimes i d) \Delta(g x) \\
(\varepsilon \otimes i d) \Delta(g x) & =(\varepsilon \otimes i d)(g x \otimes g+1 \otimes g x)=\varepsilon(g x) \otimes g+\varepsilon(1) \otimes g x) \\
& =0 \otimes g+1 \otimes g x=1 \otimes g x \cong g x \\
(i d \otimes \varepsilon) \Delta(g x) & =(i d \otimes \varepsilon)(g x \otimes g+1 \otimes g x)=g x \otimes \varepsilon(g)+x \otimes \varepsilon(g x) \\
& =g x \otimes 1+x \otimes 0=g x \otimes 1 \cong g x
\end{aligned}
$$

Hence the coassociative and conunitary maps commute for the basis elements. Therefore (H, Δ, ε) is a coalgebra.

In order for H to be a bialgebra, we need Δ and ε to be algebra maps. That is we must show the following four diagrams commute:

We can observe that the first map commutes the 16 basis elements of $H \otimes H$ with the following computations:

$$
\begin{aligned}
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(1 \otimes 1)=(m \otimes m)(i d \otimes T \otimes i d)(1 \otimes 1 \otimes 1 \otimes 1) \\
& =(m \otimes m)(1 \otimes 1 \otimes 1 \otimes 1)=1 \otimes 1=\Delta(1) \\
& =\Delta m(1 \otimes 1) \\
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(1 \otimes g)=(m \otimes m)(i d \otimes T \otimes i d)(1 \otimes 1 \otimes g \otimes g) \\
& =(m \otimes m)(1 \otimes g \otimes 1 \otimes g)=g \otimes g=\Delta(g) \\
& =\Delta m(1 \otimes g) \\
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(1 \otimes x)=(m \otimes m)(i d \otimes T \otimes i d)((1 \otimes 1) \otimes(x \otimes 1+g \otimes x)) \\
& =(m \otimes m)(i d \otimes T \otimes i d)((1 \otimes 1 \otimes x \otimes 1)+(1 \otimes 1 \otimes g \otimes x)) \\
& =(m \otimes m)(1 \otimes x \otimes 1 \otimes 1+1 \otimes g \otimes 1 \otimes x)=x \otimes 1+g \otimes x=\Delta(x) \\
& =\Delta m(1 \otimes x) \\
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(1 \otimes g x)=(m \otimes m)(i d \otimes T \otimes i d)((1 \otimes 1) \otimes(g x \otimes g+1 \otimes g x)) \\
& =(m \otimes m)(i d \otimes T \otimes i d)((1 \otimes 1 \otimes g x \otimes g)+(1 \otimes 1 \otimes 1 \otimes g x)) \\
& =(m \otimes m)(1 \otimes g x \otimes 1 \otimes g+1 \otimes 1 \otimes 1 \otimes g x)=g x \otimes g+1 \otimes g x=\Delta(g x) \\
& =\Delta m(1 \otimes g x) \\
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g \otimes 1)=(m \otimes m)(i d \otimes T \otimes i d)(g \otimes g \otimes 1 \otimes 1) \\
& =(m \otimes m)(g \otimes 1 \otimes g \otimes 1)=g \otimes g=\Delta(g) \\
& =\Delta m(g \otimes 1) \\
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g \otimes g)=(m \otimes m)(i d \otimes T \otimes i d)(g \otimes g \otimes g \otimes g) \\
& =(m \otimes m)(g \otimes g \otimes g \otimes g)=1 \otimes 1=\Delta(1) \\
& =\Delta m(g \otimes g) \\
& (m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g \otimes x)=(m \otimes m)(i d \otimes T \otimes i d)((g \otimes g) \otimes(x \otimes 1+g \otimes x)) \\
& =(m \otimes m)(i d \otimes T \otimes i d)(g \otimes g \otimes x \otimes 1+g \otimes g \otimes g \otimes x) \\
& =(m \otimes m)(g \otimes x \otimes g \otimes 1+g \otimes g \otimes g \otimes x)=g x \otimes g+1 \otimes g x=\Delta(g x) \\
& =\Delta m(g \otimes x)
\end{aligned}
$$

$$
\begin{aligned}
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g \otimes g x) & =(m \otimes m)(i d \otimes T \otimes i d)((g \otimes g) \otimes(g x \otimes g+1 \otimes g x)) \\
& =(m \otimes m)(i d \otimes T \otimes i d)(g \otimes g \otimes g x \otimes g+g \otimes g \otimes 1 \otimes g x) \\
& =(m \otimes m)(g \otimes g x \otimes g \otimes g+g \otimes 1 \otimes g \otimes g x)=x \otimes 1+g \otimes x=\Delta(x) \\
& =\Delta m(g \otimes g x)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(x \otimes 1) & =(m \otimes m)(i d \otimes T \otimes i d)((x \otimes 1+g \otimes x) \otimes 1 \otimes 1) \\
& =(m \otimes m)(i d \otimes T \otimes i d)(x \otimes 1 \otimes 1 \otimes 1+g \otimes x \otimes 1 \otimes 1 \\
& =(m \otimes m)(x \otimes 1 \otimes 1 \otimes 1+g \otimes 1 \otimes x \otimes 1)=x \otimes 1+g \otimes x=\Delta(x) \\
& =\Delta m(x \otimes 1) \\
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(x \otimes g)= & (m \otimes m)(i d \otimes T \otimes i d)((x \otimes 1+g \otimes x) \otimes g \otimes g) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(x \otimes 1 \otimes g \otimes g+g \otimes x \otimes g \otimes g \\
= & (m \otimes m)(x \otimes g \otimes 1 \otimes g+g \otimes g \otimes x \otimes g)=x g \otimes g+1 \otimes x g=\Delta(x g) \\
= & \Delta m(x \otimes g) \\
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(x \otimes x)= & (m \otimes m)(i d \otimes T \otimes i d)((x \otimes 1+g \otimes x) \otimes(x \otimes 1+g \otimes x) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(x \otimes 1 \otimes x \otimes 1+x \otimes 1 \otimes g \otimes x+g \otimes x \otimes x \otimes 1+g \otimes x \otimes g \otimes x) \\
= & (m \otimes m)(x \otimes x \otimes 1 \otimes 1+x \otimes g \otimes 1 \otimes x+g \otimes x \otimes x \otimes 1+g \otimes g \otimes x \otimes x) \\
= & 0 \otimes 1+x g \otimes x+g x \otimes x+1 \otimes 0=-g x \otimes x+g x \otimes x=\Delta(0) \\
= & \Delta m(x \otimes x) \\
& \\
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(x \otimes g x)= & (m \otimes m)(i d \otimes T \otimes i d)((x \otimes 1+g \otimes x) \otimes(g x \otimes g+1 \otimes g x) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(x \otimes 1 \otimes g x \otimes g+x \otimes 1 \otimes 1 \otimes g x+g \otimes x \otimes g x \otimes g \\
& +g \otimes x \otimes 1 \otimes g x) \\
= & (m \otimes m)(x \otimes g x \otimes 1 \otimes g+x \otimes 1 \otimes 1 \otimes g x+g \otimes g x \otimes x \otimes g+g \otimes 1 \otimes x \otimes g x) \\
= & 0 \otimes g+x \otimes g x+x \otimes x g+g \otimes 0=x \otimes g x-x \otimes g x=\Delta(0) \\
= & \Delta m(x \otimes g x) \\
& +1 \otimes g x \otimes g \otimes x \\
= & (m \otimes m)(g x \otimes x \otimes g \otimes 1+g x \otimes g \otimes g \otimes 1+1 \otimes x \otimes g x \otimes 1+1 \otimes g \otimes g x \otimes x) \\
= & 0 \otimes g+-x \otimes g+x \otimes g x+g \otimes 0=\Delta(0) \\
= & \Delta m(g x \otimes g) \\
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g x \otimes 1)= & (m \otimes m)(i d \otimes T \otimes i d)((g x \otimes g+1 \otimes g x) \otimes 1 \otimes 1) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(g x \otimes g \otimes 1 \otimes 1+1 \otimes g x \otimes 1 \otimes 1 \\
= & (m \otimes m)(g x \otimes 1 \otimes g \otimes 1+1 \otimes 1 \otimes g x \otimes 1)=g x \otimes g+1 \otimes g x=\Delta(g x) \\
= & \Delta m(g x \otimes 1) \\
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g x \otimes g)= & (m \otimes m)(i d \otimes T \otimes i d)((g x \otimes g+1 \otimes g x) \otimes g \otimes g) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(g x \otimes g \otimes g \otimes g+1 \otimes g x \otimes g \otimes g \\
= & (m \otimes m)(g x \otimes g \otimes g \otimes g+1 \otimes g \otimes g x \otimes g)=g x g \otimes g+g \otimes g x g=\Delta(g x g) \\
= & \Delta m(g x \otimes g) \\
(m \otimes T \otimes i d)(\Delta \otimes \Delta)(g x \otimes x)= & (m \otimes m)(i d \otimes T \otimes i d)((g x \otimes g+1 \otimes g x) \otimes x \otimes 1+g \otimes x) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(g x \otimes g \otimes x \otimes 1+g x \otimes g \otimes g \otimes x+1 \otimes g x \otimes x \otimes 1 \\
(m) \\
(m)
\end{array}\right)
$$

$$
\begin{aligned}
(m \otimes m)(i d \otimes T \otimes i d)(\Delta \otimes \Delta)(g x \otimes g x)= & (m \otimes m)(i d \otimes T \otimes i d)((g x \otimes g+1 \otimes g x) \otimes g x \otimes g+1 \otimes g x) \\
= & (m \otimes m)(i d \otimes T \otimes i d)(g x \otimes g \otimes g x \otimes g+g x \otimes g \otimes 1 \otimes g x+1 \otimes g x \otimes g x \otimes g \\
& +1 \otimes g x \otimes 1 \otimes g x \\
= & (m \otimes m)(g x \otimes g x \otimes g \otimes g+g x \otimes 1 \otimes g \otimes g x+1 \otimes g x \otimes g x \otimes g+1 \otimes 1 \otimes g x \otimes g x) \\
= & 0 \otimes 1+g x \otimes x+g x \otimes-x+1 \otimes 0=\Delta(0) \\
= & \Delta m(g x \otimes g x)
\end{aligned}
$$

Hence, m and Δ are compatible. Now we observe the second map commutes with the 16 basis elements of $H \otimes H$ with the following computations:

$$
\begin{aligned}
& (\varepsilon \otimes \varepsilon)(1 \otimes 1)=(\varepsilon(1) \otimes \varepsilon(1))=1 \otimes 1 \cong 1=\varepsilon(1)=\varepsilon \circ m(1 \otimes 1) \\
& (\varepsilon \otimes \varepsilon)(1 \otimes g)=(\varepsilon(1) \otimes \varepsilon(g))=1 \otimes 1 \cong 1=\varepsilon(g)=\varepsilon \circ m(1 \otimes g) \\
& (\varepsilon \otimes \varepsilon)(1 \otimes x)=(\varepsilon(1) \otimes \varepsilon(x))=1 \otimes 0 \cong 0=\varepsilon(x)=\varepsilon \circ m(1 \otimes x) \\
& (\varepsilon \otimes \varepsilon)(1 \otimes g x)=(\varepsilon(1) \otimes \varepsilon(g x))=1 \otimes 0 \cong 0=\varepsilon(g x)=\varepsilon \circ m(1 \otimes g x) \\
& (\varepsilon \otimes \varepsilon)(g \otimes 1)=(\varepsilon(g) \otimes \varepsilon(1))=1 \otimes 1 \cong 1=\varepsilon(g)=\varepsilon \circ m(g \otimes 1) \\
& (\varepsilon \otimes \varepsilon)(g \otimes g)=(\varepsilon(g) \otimes \varepsilon(g))=1 \otimes 1 \cong 1=\varepsilon\left(g^{2}\right)=\varepsilon \circ m(g \otimes g) \\
& (\varepsilon \otimes \varepsilon)(g \otimes x)=(\varepsilon(g) \otimes \varepsilon(x))=1 \otimes 0 \cong 0=\varepsilon(g x)=\varepsilon \circ m(g \otimes x) \\
& (\varepsilon \otimes \varepsilon)(g \otimes g x)=(\varepsilon(g) \otimes \varepsilon(g x))=1 \otimes 0 \cong 0=\varepsilon(x)=\varepsilon \circ m(g \otimes g x) \\
& (\varepsilon \otimes \varepsilon)(x \otimes 1)=(\varepsilon(x) \otimes \varepsilon(1))=0 \otimes 1 \cong 0=\varepsilon(x)=\varepsilon \circ m(x \otimes 1) \\
& (\varepsilon \otimes \varepsilon)(x \otimes g)=(\varepsilon(x) \otimes \varepsilon(g))=0 \otimes 1 \cong 0=\varepsilon(x g)=\varepsilon \circ m(x \otimes g) \\
& (\varepsilon \otimes \varepsilon)(x \otimes x)=(\varepsilon(x) \otimes \varepsilon(x))=0 \otimes 0 \cong 0=\varepsilon\left(x^{2}\right)=\varepsilon \circ m(x \otimes x) \\
& (\varepsilon \otimes \varepsilon)(x \otimes x g)=(\varepsilon(x) \otimes \varepsilon(x g))=0 \otimes 0 \cong 0=\varepsilon(x x g)=\varepsilon \circ m(x \otimes x g) \\
& (\varepsilon \otimes \varepsilon)(g x \otimes 1)=(\varepsilon(g x) \otimes \varepsilon(1))=0 \otimes 1 \cong 0=\varepsilon(g x)=\varepsilon \circ m(g x \otimes 1) \\
& (\varepsilon \otimes \varepsilon)(g x \otimes g)=(\varepsilon(g x) \otimes \varepsilon(g))=0 \otimes 1 \cong 0=\varepsilon(g x g)=\varepsilon \circ m(g x \otimes 1) \\
& (g x \otimes x)=(\varepsilon(g x) \otimes \varepsilon(x))=0 \otimes 0 \cong 0=\varepsilon\left(g x^{2}\right)=\varepsilon \circ m(g x \otimes x)
\end{aligned}
$$

$$
(\varepsilon \otimes \varepsilon)(g x \otimes g x)=(\varepsilon(g x) \otimes \varepsilon(g x))=0 \otimes 0 \cong 0=\varepsilon\left((g x)^{2}\right)=\varepsilon \circ m(g x \otimes g x)
$$

Hence, ε and m are compatible. Now we observe the third map commutes for any element $\lambda \in \mathbb{K}$:

$$
\begin{aligned}
\Delta \circ u(\lambda) & =\lambda\left(\Delta \circ u\left(1_{\mathbb{K}}\right)\right)=\lambda(\Delta(1))=\lambda(1 \otimes 1) \\
& =(u \otimes u)\left(\lambda\left(1_{\mathbb{K}} \otimes 1_{\mathbb{K}}\right)\right)=(u \otimes u)\left(\lambda \otimes 1_{\mathbb{K}}\right) \\
& \text { note: } \lambda \otimes 1_{\mathbb{K}} \cong \lambda
\end{aligned}
$$

Hence, u and Δ are compatible. Finally, we observe the fourth map commutes for any element $\lambda \in \mathbb{K}$:

$$
\begin{aligned}
\varepsilon(u(\lambda)) & =\lambda\left(\varepsilon\left(u\left(1_{\mathbb{K}}\right)\right)\right)=\lambda(\varepsilon(1))=\lambda\left(1_{\mathbb{K}}\right) \\
& =\lambda
\end{aligned}
$$

Hence, ε and u are compabtible. We have that all four diagmrams commute so $(H, m, u, \Delta, \varepsilon)$ is a bialgebra.

