6. $\mathbb{R}[x, y]$ is a finitely generated algebra. Take the subalgebra generated by $\left\{x y^{i}: i \geq 1\right\}$. Suppose it is finitely generated with set of generators $\left\{a_{k}\right\}$. take $r=\max _{k} \operatorname{deg}_{y}\left(a_{k}\right), m=\max _{k} \operatorname{deg}_{x}\left(a_{k}\right)$. Notice that for any monomial v of this subalgebra $\operatorname{deg}_{x}(v) \leq \operatorname{deg}_{y}(v)$. Take n an integer greater than $m r$ and divisible by m. It is easy to see that $x^{m} y^{n}$ is an element of this subalgebra. To achieve the degree of y in $x^{m} y^{n}$ we would need to raise some generator to some power greater than m but then we would get some element with $\operatorname{deg}_{x}>m$ so it can't be $x^{m} y^{n}$. This is a contradiction and hence this subalgebra is not finitely generated.
