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(c) Prove that Mm×m(F)⊗Mn×n(F) ∼= Mmn×mn(F) as F-algebras.

Proof. Define a map from Mm×m(F)⊗Mn×n(F)→Mmn×mn(F) by

φ ([λij]⊗ [γkl]) = [λij [γkl]] ,

that is, each scalar in the matrix Λ is transformed into a scalar multiple of
the matrix Γ.

Let {µij} and {νkl} be bases for Mm×m and Mn×n, where µij is the m×m
matrix with 1 in the ijth entry 0 everywhere else, and νkl is the n× n matrix
with 1 in the klth entry 0 everywhere else. Here i and j run from 1 to m, k
and l run from 1 to n. The standard basis for Mmn×mn is {σpq}, where σpq is
the mn×mn matrix with 1 in the pqth entry 0 everywhere else. We will show
that φ uniquely associates the basis vectors of the tensor space Mm×m⊗Mn×n

to the basis vectors of Mmn×mn.
Take φ (µij ⊗ νkl). The resulting matrix should be zero everywhere out-

side the ijth n × n block. Furthermore, within this block, it should be zero
everywhere except for a 1 in the klth space. Then we have an mn×mn matrix
non-zero everywhere except the n(i − 1) + k, n(j − 1) + lth position. Then
φ (µij ⊗ νkl) = σn(i−1)+k,n(j−1)+l, so φ maps basis vectors in the tensor space
to basis vectors in the larger matrix space.

We know that for any integer p, there is a unique choice of i and k such
that n(i− 1) + k = p, so this is an injective map. By our work in problem 1,
we know that dim (Mm×m(F)⊗Mn×n(F)) = dim (Mmn×mn(F)), so injectivity
also establishes subjectivity, so we have an isomorphism of vector spaces. A
moments consideration shows that this map preserves the additive and multi-
plicative identities, so all that remain is to check that φ respects the operations.

φ respects addition: It is enough to check the basis vectors.

φ(µij ⊗ νkl) + φ(µi′j′ ⊗ νk′l′) = σn(i−1)+k,n(j−1)+l + σn(i′−1)+k′,n(j′−1)+l′

= φ ((µij ⊗ νkl) + (µi′j′ ⊗ νk′l′)) .

φ respects multiplication: We check the basis vectors:
First note that µijµi′j′ = µij′ , and similarly for the νs and σs. Then

φ(µij ⊗ νkl)φ(µi′j′ ⊗ νk′l′) = σn(i−1)+k,n(j−1)+lσn(i′−1)+k′,n(j′−1)+l′

= σn(i−1)+k,n(j′−1)+l′

= φ (µij′ ⊗ νkl′)

= φ(µij ⊗ νkl)(µi′j′ ⊗ νk′l′)).

�

3. Grouplike Elements in the Group Ring
In a coalgebra, we say the element x is grouplike if ∆(x) = x ⊗ x. Prove

that in the group ring F[G], x is grouplike if and only if x ∈ G.
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Proof. In the group ring F(G), we have comultiplication defined by ∆(g) =
g ⊗ g for g ∈ G, and extended linearly. Thus if x ∈ G, we have ∆(x) = x⊗ x
by definition. What remains to show is that ∆(x) = x⊗ x⇒ x ∈ G.

Let x ∈ F(G), then x =
∑

g∈G λgg. Note that addition in the group ring
is defined by addition in the field treating the group elements as the basis of
a vector space. By the linearity of ∆, we have

∆x = ∆

(∑
g∈G

λgg

)
=
∑
g∈G

λg∆g

=
∑
g∈G

λgg ⊗ g,

and from our tensor axioms,

x⊗ x =

(∑
g∈G

λgg

)
⊗

(∑
h∈G

λhh

)
=
∑

g,h∈G

λgλhg ⊗ h.

Equating these two, we get∑
g∈G

λgg ⊗ g =
∑

g,h∈G

λgλhg ⊗ h.

Since g ⊗ h does not appear on the left hand side of the equality, we must
have λgλh = 0 for all g 6= h. Then if any λg 6= 0, we must have λh = 0 for all
h 6= g. Then x = λgg for some g. We now have

λgg ⊗ g = λ2
gg ⊗ g,

so we get λ2
g = λg. Then we get λg = 0 or λg = 1, so either x = g or x = 0,

where 0 is the additive identity in the group ring.
�

4. A Non-Commutative, Non-Cocommutative Bialgebra
Let q ∈ F be non-zero. Consider the F-algebra H4 generated by indeter-

minates g and x subject to the relations g2 = 1, x2 = 0, and xg = −gx.
(a) Show that 1, g, x, and gx form a basis for H4.

Proof. We first show that H4 is in the span of {1, g, x, gx}. Note that since we
are in an algebra, and we are free to scale by elements in our field (such as -1),
then the span of {gx,−xg} is the same os the span of {gx}. Then on any set
of elements of H4, we can freely apply the map gx 7→ xg without changing the
span of the set. In particular, this allows us to transform any word in xs and
gs into a cannonical form, ±gixj. Note that using the relations g2 = 1, x2 = 0


