3. Grouplike Elements in the Group Ring

In a coalgebra, we say the element x is grouplike if $\Delta(x)=x \otimes x$. Prove that in the group ring $\mathbb{F}[G], x$ is grouplike if and only if $x \in G$.

Proof. In the group ring $\mathbb{F}(G)$, we have comultiplication defined by $\Delta(g)=$ $g \otimes g$ for $g \in G$, and extended linearly. Thus if $x \in G$, we have $\Delta(x)=x \otimes x$ by definition. What remains to show is that $\Delta(x)=x \otimes x \Rightarrow x \in G$.

Let $x \in \mathbb{F}(G)$, then $x=\sum_{g \in G} \lambda_{g} g$. Note that addition in the group ring is defined by addition in the field treating the group elements as the basis of a vector space. By the linearity of Δ, we have

$$
\begin{aligned}
\Delta x & =\Delta\left(\sum_{g \in G} \lambda_{g} g\right) \\
& =\sum_{g \in G} \lambda_{g} \Delta g \\
& =\sum_{g \in G} \lambda_{g} g \otimes g,
\end{aligned}
$$

and from our tensor axioms,

$$
\begin{aligned}
x \otimes x & =\left(\sum_{g \in G} \lambda_{g} g\right) \otimes\left(\sum_{h \in G} \lambda_{h} h\right) \\
& =\sum_{g, h \in G} \lambda_{g} \lambda_{h} g \otimes h .
\end{aligned}
$$

Equating these two, we get

$$
\sum_{g \in G} \lambda_{g} g \otimes g=\sum_{g, h \in G} \lambda_{g} \lambda_{h} g \otimes h
$$

Since $g \otimes h$ does not appear on the left hand side of the equality, we must have $\lambda_{g} \lambda_{h}=0$ for all $g \neq h$. Then if any $\lambda_{g} \neq 0$, we must have $\lambda_{h}=0$ for all $h \neq g$. Then $x=\lambda_{g} g$ for some g. We now have

$$
\lambda_{g} g \otimes g=\lambda_{g}^{2} g \otimes g
$$

so we get $\lambda_{g}^{2}=\lambda_{g}$. Then we get $\lambda_{g}=0$ or $\lambda_{g}=1$, so either $x=g$ or $x=0$, where 0 is the additive identity in the group ring.

