1. (With Nino, Brian.) Let V and W be \mathbb{F}-vector spaces. We prove that if $\left\{v_{i}: i \in I\right\}$ and $\left\{w_{j}: j \in J\right\}$ are bases for V and W, respectively, then $\mathcal{B}=\left\{v_{i} \otimes w_{j}: i \in I ; j \in J\right\}$ is a basis for $V \otimes W$.

Proof. First we will prove that \mathcal{B} spans $V \otimes W$. We observe that it suffices to consider pure tensors, that is, the fact that the result holds for pure tensors implies that it also holds non-pure tensor elements.

Let $v \otimes w \in V \otimes W$. Let $v=\sum_{l \in L} a_{l} v_{l}$, for $0<|L|<\infty$, and $w=\sum_{m \in M} b_{m} w_{m}$, for $0<|M|<\infty$. Therefore,

$$
v \otimes w=\left(\sum_{l \in L} a_{l} v_{l}\right) \otimes\left(\sum_{m \in M} b_{m} w_{m}\right)=\sum_{l, m}\left(a_{l} v_{l} \otimes b_{m} w_{m}\right)=\sum_{l, m} a_{l} b_{m}\left(v_{l} \otimes w_{m}\right),
$$

which implies that \mathcal{B} spans $V \otimes W$.
Now we will show that \mathcal{B} is linearly independent. By way of contradiction, assume that \mathcal{B} is linearly dependent. Let $N \subseteq \mathbb{N}$, with $0<|N|<\infty$, and $\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ be such that

$$
\sum_{n \in N} a_{n}\left(v_{n} \otimes w_{n}\right)=0
$$

where $a_{i} \neq 0$ for at least one $i \in N$. The above implies that $\sum_{n \in N}\left(a_{n} v_{n} \otimes w_{n}\right)=0$.
By the "useful lemma," $a_{n} v_{n}=0$ for all $n \in N$. Since $\left\{v_{i}: i \in I\right\}$ is a basis for V, $\left\{v_{i}: i \in I\right\}$ is linearly independent, so $a_{n} v_{n}=0$ if and only if $a_{n}=0$ for all $n \in N$. However, this contradicts our assumption that there is at least one $i \in N$ with $a_{i} \neq 0$.

We conclude that \mathcal{B} is a basis for $V \otimes W$.
We observe that if $\operatorname{dim} V$ and $\operatorname{dim} W$ are finite, then $\operatorname{dim}(V \otimes W)=\operatorname{dim} V \operatorname{dim} W$ because there are $\operatorname{dim} V$ possibilities for the first coordinate, while there are dim W different possibilities for the second coordinate, which implies there are $\operatorname{dim} V \operatorname{dim} W$ different pure tensors $v_{i} \otimes w_{j}$ in the basis $\left\{v_{i} \otimes w_{j}: i \in I ; j \in J\right\}$.

