4. (Tilings of a rectangle) (Collaborators: Crista, Tahir) Let t_{n} be the number of tilings of a $2 \times n$ rectangle into dominoes and L -shaped trominoes. Find the generating function for t_{n}.

Proof. We want to find the generating function for t_{n}. Note that t_{n} is the number of tilings of a $2 \times n$ rectangle into dominoes and trominoes. So, we have a combinatorial class where our set T, with a size function \mid tilings $\mid=n$ (where n is the length), is defined below:

$$
\begin{aligned}
T & =\{\text { domino and tromino tilings of rectangles of width } 2\}, \\
& \text { and } \\
T_{\text {irred }} & =\{\text { Those without "fault line" }\} \\
& =\{\square
\end{aligned}
$$

Note that these are the only irreducibles (including the "flips" of the $2 \times n$ rectangles for $n=3,4, \ldots)$. The only way to have a 2×1 is to have a vertical domino. The only way to have a 2×2 is to have two horizontal dominoes. We cannot have a 2×2 starting with a vertical domino because we will have a fault line (hence, not irreducible). For a $2 \times n$ rectangle where $n=3,4, \ldots$, we must start and end with a tromino and only have horizontal dominoes in between to insure that we will not have any fault lines in our tiling. Now, $T=\operatorname{Seq}\left(T_{\text {irred }}\right)$ and our generating function is

$$
\begin{aligned}
T(z) & =\frac{1}{1-\left(z+z^{2}+2 z^{3}+2 z^{4}+2 z^{5}+2 z^{6}+\cdots\right)} \\
& =\frac{1}{1-z-z^{2}-2 z^{3}\left(1+z+z^{2}+\cdots\right)} \\
& =\frac{1}{1-z-z^{2}-2 z^{3}\left(\frac{1}{1-z}\right)} \\
& =\frac{1}{1-z-z^{2}-\frac{2 z^{3}}{1-z}} \\
& =\frac{1}{1-z-z^{2}-\frac{2 z^{3}}{1-z}} \cdot \frac{1-z}{1-z} \\
& =\frac{1-z}{1-z-z+z^{2}-z^{2}+z^{3}-2 z^{3}} \\
& =\frac{1-z}{1-2 z-z^{3}} .
\end{aligned}
$$

