3 Another family of lattice paths

(a) Let r_{n} be the number of paths from $(0,0)$ to $(2 n, 0)$ using steps $(1,1),(1,-1)$ or $(2,0)$ which never go below the x-axis. $r_{0}=1$ since the only path is the empty path. Now, if we want a path from $(0,0)$ to $(2(n+1), 0)$ we can start with a $(2,0)$ step or with a $(1,1)$ step.

If we start with a $(2,0)$ step, the path from $(2,0)$ to $(2(n+2), 0)$ is just another of these paths with length $2 n$, so there are r_{n} options.

If we start with a $(1,1)$ step, let $k \geq 0$ be the minimum integer such that the path touches the x-axis for the first time after $(0,0)$ in $(2(k+1), 0)$. Then the last step before reaching $(2(k+1), 0)$ is a $(1,-1)$ and the path between $(1,1)$ and $(2 k+1,1)$ is one of these paths of length $2 k$, so there are r_{k} options. The path from $(2(k+1), 0)$ to $(2(n+1), 0)$ is also one of these paths and has length $2(n-k)$, so there are r_{n-k} options for this path. Note that k can be any number from 0 (if the second step is $(1,-1)$) to n (if the path only touches the x-axis at the beginning and the end).

Then we have the recurrence:

$$
r_{n+1}=r_{n}+\sum_{k=0}^{n} r_{k} r_{n-k}
$$

Let $G(x)=\sum_{n \geq 0} r_{n} x^{n}$ be the generating function for r_{n}. Multiplying by x^{n} on both sides
of the previous equality and adding for $n \geq 0$ we get:

$$
\begin{aligned}
\sum_{n \geq 0} r_{n+1} x^{n} & =\sum_{n \geq 0} r_{n} x^{n}+\sum_{n \geq 0}\left(\sum_{k=0}^{n} r_{k} r_{n-k}\right) x^{n} \\
\sum_{n \geq 0} r_{n+1} x^{n} & =G(x)+(G(x))^{2} \\
\sum_{n \geq 1} r_{n} x^{n} & =x G(x)+x(G(x))^{2} \\
\left(G(x)-r_{0}\right) & =x G(x)+x(G(x))^{2} \\
0 & =x(G(x))^{2}+(x-1) G(x)+1 \\
0 & =(x G(x))^{2}+x(x-1) G(x)+x \\
-x & =(x G(x))^{2}+x(x-1) G(x) \\
-x+\frac{(x-1)^{2}}{4} & =(x G(x))^{2}+x(x-1) G(x)+\frac{(x-1)^{2}}{4} \\
-x+\frac{x^{2}-2 x+1}{4} & =\left(x G(x)+\frac{x-1}{2}\right)^{2} \\
\frac{x^{2}-6 x+1}{4} & =\left(x G(x)+\frac{x-1}{2}\right)^{2} \\
\frac{ \pm \sqrt{x^{2}-6 x+1}}{2} & =x G(x)+\frac{x-1}{2}
\end{aligned}
$$

evaluating both sides in $x=0$ we get $\frac{ \pm 1}{2}=\frac{-1}{2}$, so the sign in the left side is a - . Then:

$$
G(x)=\frac{1-x-\sqrt{x^{2}-6 x+1}}{2 x}
$$

(b) We want to prove that for $n \geq 2$:

$$
(n+1) r_{n}=(6 n-3) r_{n-1}-(n-2) r_{n-2}
$$

This is equivalent to show that:

$$
\sum_{n \geq 2}(n+1) r_{n} x^{n}=\sum_{n \geq 2}\left[(6 n-3) r_{n-1}-(n-2) r_{n-2}\right] x^{n}
$$

since two power series are equal if and only if their coefficients are equal. We have:

$$
\begin{aligned}
\sum_{n \geq 2}(n+1) r_{n} x^{n} & =x \sum_{n \geq 2} n r_{n} x^{n-1}+\sum_{n \geq 2} r_{n} x^{n} \\
& =x \sum_{n \geq 2}\left(r_{n} x^{n}\right)^{\prime}+\sum_{n \geq 2} r_{n} x^{n} \\
& =x(G(x)-1-2 x)^{\prime}+(G(x)-1-2 x) \\
& =x G(x)^{\prime}-2 x+G(x)-1-2 x \\
& =x G(x)^{\prime}+G(x)-4 x-1
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n \geq 2}(6 n-3) r_{n-1} x^{n} & =6 x^{2} \sum_{n \geq 2}(n-1) r_{n-1} x^{n-2}+3 x \sum_{n \geq 2} r_{n-1} x^{n-1} \\
& =6 x^{2} \sum_{n \geq 2}\left(r_{n-1} x^{n-1}\right)^{\prime}+3 x \sum_{n \geq 1} r_{n} x^{n} \\
& =6 x^{2}(G(x)-1)^{\prime}+3 x(G(x)-1) \\
& =6 x^{2} G(x)^{\prime}+3 x G(x)-3 x \\
\sum_{n \geq 2}(n-2) r_{n-2} x^{n} & =x^{3} \sum_{n \geq 2}(n-2) r_{n-2} x^{n-3} \\
& =x^{3} \sum_{n \geq 2}\left(r_{n-2} x^{n-2}\right)^{\prime} \\
& =x^{3} G(x)^{\prime}
\end{aligned}
$$

Then the equality we want to prove becomes:

$$
x G(x)^{\prime}+G(x)-4 x-1=6 x^{2} G(x)^{\prime}+3 x G(x)-3 x-x^{3} G(x)^{\prime}
$$

or

$$
\left(x^{3}-6 x^{2}+x\right) G(x)^{\prime}+(1-3 x) G(x)-x-1=0
$$

Note that

$$
G(x)^{\prime}=\frac{-\sqrt{x^{2}-6 x+1}-3 x+1}{2 x^{2} \sqrt{x^{2}-6 x+1}}
$$

so

$$
\begin{aligned}
& \left(x^{3}-6 x^{2}+x\right) G(x)^{\prime}+(1-3 x) G(x)-x-1 \\
= & \left(x^{3}-6 x^{2}+x\right) \frac{-\sqrt{x^{2}-6 x+1}-3 x+1}{2 x^{2} \sqrt{x^{2}-6 x+1}}+(1-3 x) \frac{1-x-\sqrt{x^{2}-6 x+1}}{2 x}-x-1 \\
= & \frac{-\left(x^{2}-6 x+1\right)-(3 x-1) \sqrt{x^{2}-6 x+1}}{2 x}+\frac{(1-3 x)(1-x)-(1-3 x) \sqrt{x^{2}-6 x+1}}{2 x}-x-1 \\
= & \frac{-x^{2}+6 x-1}{2 x}+\frac{1-4 x+3 x^{2}}{2 x}-x-1 \\
= & \frac{2 x^{2}+2 x}{2 x}-x-1 \\
= & x+1-x-1 \\
= & 0
\end{aligned}
$$

as we wanted to show. Then, for $n \geq 2$

$$
(n+1) r_{n}=(6 n-3) r_{n-1}-(n-2) r_{n-2}
$$

