3 Another family of lattice paths

(a) Let r, be the number of paths from (0,0) to (2n,0) using steps (1,1), (1,—1) or
(2,0) which never go below the z-axis. rp = 1 since the only path is the empty path.
Now, if we want a path from (0,0) to (2(n + 1),0) we can start with a (2,0) step or
with a (1,1) step.

If we start with a (2,0) step, the path from (2,0) to (2(n + 2),0) is just another of
these paths with length 2n, so there are r,, options.

If we start with a (1,1) step, let £ > 0 be the minimum integer such that the path
touches the z-axis for the first time after (0,0) in (2(k + 1),0). Then the last step
before reaching (2(k +1),0) is a (1, —1) and the path between (1,1) and (2k + 1,1) is
one of these paths of length 2k, so there are ry options. The path from (2(k 4+ 1),0) to
(2(n+1),0) is also one of these paths and has length 2(n — k), so there are r,,_j options
for this path. Note that k£ can be any number from 0 (if the second step is (1, —1)) to
n (if the path only touches the z-axis at the beginning and the end).

Then we have the recurrence:
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Let G(z) = Z r,x" be the generating function for r,. Multiplying by ™ on both sides
n>0



of the previous equality and adding for n > 0 we get:
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evaluating both sides in x = 0 we get - = 5 0 the sign in the left side is a —.
Then:
l—z—+Va?2—-6x+1
G(z) = 5

(b) We want to prove that for n > 2:
(n+1)r, =(6n—3)r,—1 — (n — 2)rp_2

This is equivalent to show that:
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since two power series are equal if and only if their coefficients are equal. We have:
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Then the equality we want to prove becomes:
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as we wanted to show. Then, for n > 2

(n+1)r, =(6n—3)r,_1 —(n—2)r, o
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