
3 | Another family of lattice paths

(a) Let rn be the number of paths from (0, 0) to (2n, 0) using steps (1, 1), (1,−1) or
(2, 0) which never go below the x-axis. r0 = 1 since the only path is the empty path.
Now, if we want a path from (0, 0) to (2(n + 1), 0) we can start with a (2, 0) step or
with a (1, 1) step.

If we start with a (2, 0) step, the path from (2, 0) to (2(n + 2), 0) is just another of
these paths with length 2n, so there are rn options.

If we start with a (1, 1) step, let k ≥ 0 be the minimum integer such that the path
touches the x-axis for the first time after (0, 0) in (2(k + 1), 0). Then the last step
before reaching (2(k + 1), 0) is a (1,−1) and the path between (1, 1) and (2k + 1, 1) is
one of these paths of length 2k, so there are rk options. The path from (2(k + 1), 0) to
(2(n+1), 0) is also one of these paths and has length 2(n−k), so there are rn−k options
for this path. Note that k can be any number from 0 (if the second step is (1,−1)) to
n (if the path only touches the x-axis at the beginning and the end).

Then we have the recurrence:

rn+1 = rn +
n∑

k=0

rkrn−k

Let G(x) =
∑
n≥0

rnx
n be the generating function for rn. Multiplying by xn on both sides
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of the previous equality and adding for n ≥ 0 we get:

∑
n≥0

rn+1x
n =

∑
n≥0

rnx
n +

∑
n≥0

(
n∑

k=0

rkrn−k

)
xn

∑
n≥0

rn+1x
n = G(x) + (G(x))2∑

n≥1

rnx
n = xG(x) + x(G(x))2

(G(x)− r0) = xG(x) + x(G(x))2

0 = x(G(x))2 + (x− 1)G(x) + 1
0 = (xG(x))2 + x(x− 1)G(x) + x
−x = (xG(x))2 + x(x− 1)G(x)

−x +
(x− 1)2

4
= (xG(x))2 + x(x− 1)G(x) +

(x− 1)2

4

−x +
x2 − 2x + 1

4
=

(
xG(x) +

x− 1

2

)2

x2 − 6x + 1

4
=

(
xG(x) +

x− 1

2

)2

±
√
x2 − 6x + 1

2
= xG(x) +

x− 1

2

evaluating both sides in x = 0 we get
±1

2
=
−1

2
, so the sign in the left side is a −.

Then:

G(x) =
1− x−

√
x2 − 6x + 1

2x

(b) We want to prove that for n ≥ 2:

(n + 1)rn = (6n− 3)rn−1 − (n− 2)rn−2

This is equivalent to show that:∑
n≥2

(n + 1)rnx
n =

∑
n≥2

[(6n− 3)rn−1 − (n− 2)rn−2]x
n

since two power series are equal if and only if their coefficients are equal. We have:∑
n≥2

(n + 1)rnx
n = x

∑
n≥2

nrnx
n−1 +

∑
n≥2

rnx
n

= x
∑
n≥2

(rnx
n)′ +

∑
n≥2

rnx
n

= x(G(x)− 1− 2x)′ + (G(x)− 1− 2x)
= xG(x)′ − 2x + G(x)− 1− 2x
= xG(x)′ + G(x)− 4x− 1
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∑
n≥2

(6n− 3)rn−1x
n = 6x2

∑
n≥2

(n− 1)rn−1x
n−2 + 3x

∑
n≥2

rn−1x
n−1

= 6x2
∑
n≥2

(rn−1x
n−1)′ + 3x

∑
n≥1

rnx
n

= 6x2(G(x)− 1)′ + 3x(G(x)− 1)
= 6x2G(x)′ + 3xG(x)− 3x∑

n≥2

(n− 2)rn−2x
n = x3

∑
n≥2

(n− 2)rn−2x
n−3

= x3
∑
n≥2

(rn−2x
n−2)′

= x3G(x)′

Then the equality we want to prove becomes:

xG(x)′ + G(x)− 4x− 1 = 6x2G(x)′ + 3xG(x)− 3x− x3G(x)′

or
(x3 − 6x2 + x)G(x)′ + (1− 3x)G(x)− x− 1 = 0

Note that

G(x)′ =
−
√
x2 − 6x + 1− 3x + 1

2x2
√
x2 − 6x + 1

so

(x3 − 6x2 + x)G(x)′ + (1− 3x)G(x)− x− 1

= (x3 − 6x2 + x)
−
√
x2 − 6x + 1− 3x + 1

2x2
√
x2 − 6x + 1

+ (1− 3x)
1− x−

√
x2 − 6x + 1

2x
− x− 1

=
−(x2 − 6x + 1)− (3x− 1)

√
x2 − 6x + 1

2x
+

(1− 3x)(1− x)− (1− 3x)
√
x2 − 6x + 1

2x
− x− 1

=
−x2 + 6x− 1

2x
+

1− 4x + 3x2

2x
− x− 1

=
2x2 + 2x

2x
− x− 1

= x + 1− x− 1
= 0

as we wanted to show. Then, for n ≥ 2

(n + 1)rn = (6n− 3)rn−1 − (n− 2)rn−2
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