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1. (a) There is a bijection between dull sequences of length n with largest element m
and set partitions of [n] with m blocks. This bijection is as follows: Given a set
partition of [n] with m blocks, we label the blocks in increasing order of their
least elements, and we associate to this partition the dull sequence d = d1 · · · dn,
where for each 1 ≤ j ≤ n, dj is the label of the block containing j. (To see that
d is indeed a dull sequence, notice that for each 1 ≤ k ≤ m, the index of the
first occurrence of k in d is the value of the smallest element in the block with
label k; since the blocks are labeled in increasing order of their least elements,
the block labeled k − 1 must have a least element that is smaller than the least
element of the block labeled k, which is to say that k − 1 appears to the left of
k in d. And d must have largest element m because there are m blocks in the
partition.) To invert this map, we simply group the indices of d with the same
value. It follows from this bijection that the number of dull sequences of length
n with largest element m is S(n,m).

(b) The number of dull sequences of length n is the sum over all 1 ≤ m ≤ n of the
number of dull sequences of length n with largest element m; it thus follows from
the bijection given in (a) that the number of dull sequences of length n is Bn,
the nth Bell number.

2. (a) To prove this identity, we equate coefficients on the left- and right-hand sides of
the equation. By definition of pn,

pn(x+ y) =
∑
k≥0

S(n, k)(x+ y)k

Applying the binomial theorem to (x+ y)k, we have

pn(x+ y) =
∑
k≥0

S(n, k)
k∑

j=0

(
k

j

)
xjyk−j

Let r, s ≥ 0. Then

[xrys]
∑
k≥0

S(n, k)

k∑
j=0

(
k

j

)
xjyk−j = S(n, r + s)

(
r + s

r

)
i.e.,

[xrys]pn(x+ y) = S(n, r + s)

(
r + s

r

)
As for the right side: First, to avoid confusion in the argument below, we replace
the variable k in this expression with j. That is, the right-hand side is

n∑
j=0

(
n

j

)
pj(x)pn−j(y)



Writing

pj(x) =
∑
`≥0

S(j, `)x`, pn−j(y) =
∑
m≥0

S(n− j,m)ym

we have that

n∑
j=0

(
n

j

)
pj(x)pn−j(y) =

n∑
j=0

(
n

j

)∑
`≥0

S(j, `)x`

∑
m≥0

S(n− j,m)ym


For r, s ≥ 0,

[xrys]

∑
`≥0

S(j, `)x`

∑
m≥0

S(n− j,m)ym

 = S(j, r)S(n− j, s)

and it follows that

[xrys]
n∑

j=0

(
n

j

)
pj(x)pn−j(y) =

n∑
j=0

(
n

j

)
S(j, r)S(n− j, s)

Hence it remains to show that

S(n, r + s)

(
r + s

r

)
=

n∑
j=0

(
n

j

)
S(j, r)S(n− j, s)

This may be done via a combinatorial argument. Indeed, both expressions count
the number of ways to decorate a subset of [n] and then to partition [n] such that
each block contains only decorated elements or only undecorated elements, and
there are exactly r blocks and exactly s blocks containing undecorated elements.
On the left-hand side, we first choose a partition of [n] into r+s blocks (S(n, r+s)
ways) and then choose r of these r + s blocks to have their elements decorated
(
(
r+s
r

)
ways). On the right-hand side, we condition on the number 1 ≤ j ≤ n

of decorated elements. For each 1 ≤ j ≤ n, we first choose j elements to be
decorated (

(
n
j

)
ways), then partition these j decorated elements into r blocks

(S(j, r) ways) and partition the remaining n − j undecorated elements into s
blocks (S(n− j, s) ways). Summing over all j yields the desired equality.

(b) We first note that since pn has only finitely many nonzero coefficients, we may
view it as a polynomial, and thus we may evaluate it for various choices of x.
For example,

pn(1) =
∑
k≥0

S(n, k) = Bn

Additionally, we can evaluate pn(x + y) for particular choices of x and y. For
example, if y = 1, we have

pn(x+ 1) =

n∑
k=0

(
n

k

)
pk(x)pn−k(1) =

n∑
k=0

(
n

k

)
pk(x)Bn−k


