2. (a) To prove this identity, we equate coefficients on the left- and right-hand sides of the equation. By definition of p_{n},

$$
p_{n}(x+y)=\sum_{k \geq 0} S(n, k)(x+y)^{k}
$$

Applying the binomial theorem to $(x+y)^{k}$, we have

$$
p_{n}(x+y)=\sum_{k \geq 0} S(n, k) \sum_{j=0}^{k}\binom{k}{j} x^{j} y^{k-j}
$$

Let $r, s \geq 0$. Then

$$
\left[x^{r} y^{s}\right] \sum_{k \geq 0} S(n, k) \sum_{j=0}^{k}\binom{k}{j} x^{j} y^{k-j}=S(n, r+s)\binom{r+s}{r}
$$

i.e.,

$$
\left[x^{r} y^{s}\right] p_{n}(x+y)=S(n, r+s)\binom{r+s}{r}
$$

As for the right side: First, to avoid confusion in the argument below, we replace the variable k in this expression with j. That is, the right-hand side is

$$
\sum_{j=0}^{n}\binom{n}{j} p_{j}(x) p_{n-j}(y)
$$

Writing

$$
p_{j}(x)=\sum_{\ell \geq 0} S(j, \ell) x^{\ell}, \quad p_{n-j}(y)=\sum_{m \geq 0} S(n-j, m) y^{m}
$$

we have that

$$
\sum_{j=0}^{n}\binom{n}{j} p_{j}(x) p_{n-j}(y)=\sum_{j=0}^{n}\binom{n}{j}\left(\sum_{\ell \geq 0} S(j, \ell) x^{\ell}\right)\left(\sum_{m \geq 0} S(n-j, m) y^{m}\right)
$$

For $r, s \geq 0$,

$$
\left[x^{r} y^{s}\right]\left(\sum_{\ell \geq 0} S(j, \ell) x^{\ell}\right)\left(\sum_{m \geq 0} S(n-j, m) y^{m}\right)=S(j, r) S(n-j, s)
$$

and it follows that

$$
\left[x^{r} y^{s}\right] \sum_{j=0}^{n}\binom{n}{j} p_{j}(x) p_{n-j}(y)=\sum_{j=0}^{n}\binom{n}{j} S(j, r) S(n-j, s)
$$

Hence it remains to show that

$$
S(n, r+s)\binom{r+s}{r}=\sum_{j=0}^{n}\binom{n}{j} S(j, r) S(n-j, s)
$$

This may be done via a combinatorial argument. Indeed, both expressions count the number of ways to decorate a subset of $[n]$ and then to partition $[n]$ such that each block contains only decorated elements or only undecorated elements, and there are exactly r blocks and exactly s blocks containing undecorated elements. On the left-hand side, we first choose a partition of $[n]$ into $r+s$ blocks ($S(n, r+s$) ways) and then choose r of these $r+s$ blocks to have their elements decorated ($\binom{r+s}{r}$ ways). On the right-hand side, we condition on the number $1 \leq j \leq n$ of decorated elements. For each $1 \leq j \leq n$, we first choose j elements to be decorated ($\binom{n}{j}$ ways), then partition these j decorated elements into r blocks ($S(j, r)$ ways) and partition the remaining $n-j$ undecorated elements into s blocks ($S(n-j, s)$ ways). Summing over all j yields the desired equality.

