1. (Dull sequences) A sequence of positive integers is dull if for any $k>1$ which appears in the sequence, the number $k>1$ appears at least once before the first occurrence of k.
(a) Find $a_{n}(m)$, the number of dull sequences of length n where the largest number is m. We show our desired number by first seeing the correspondence dull sequences have with set partitions.

The constraint we are given tells us that if the number k appears, we must have that $1,2, \ldots, k-1$ must also appear to the left of $k^{\prime} s$ first appearance. For a given dull sequence of length n with a largest number m, we show a 1-1 correspondence to a m-set partition of $[n]$. Let $\sigma=\sigma_{1} \ldots \sigma_{n}$ be a dull sequence of length n with largest number m. Then we know σ contains the numbers $1, \ldots, m$. To get its corresponding set partition $A_{1} \sqcup \ldots \sqcup A_{m}$ we define the sets by

$$
A_{i}=\left\{j: \sigma_{j}=i\right\}
$$

For example consider the dull sequence $\sigma=11123223114444255$. Since the length of σ is 17 it must correspond to a set partion of [17]. By definition of A_{i} we get that partition

$$
\{1,2,3,9,10\} \sqcup\{4,6,7,15\} \sqcup\{5,8\} \sqcup\{11,12,13,14\} \sqcup\{16,17\}
$$

Thus we see that for each set A_{i} its minimum value corresponds to the first appearance of i. Therefore given any set partition of $[n]$, order the sets A_{i} in increasing order by its minimum values. Do the reverse to what we did to sets A_{i} to create a sequence. By construction this will have to be a dull sequence.

Hence we have that

$$
a_{n}(m)=S(n, m)
$$

where $S(n, k)$ is the Stirling number of the second kind.

