1. ExERCISE 1.

1.1. Dull sequences must be the same as set partitions. Let $\mathcal{A}(m+n, m)$ denote the set of dull sequences of length $n+m \geq 1$ and maximum $m \geq 1$ and let $A(n+m, m)$ be its cardinality. Define the combinatorial class $\mathcal{A}(m+\cdot, m)$ that contains the sequences in $\mathcal{A}(m+n, m)$ for any $n \geq 0$ along with the size function $|\cdot|=$ "length of the sequence".
Thanks to the definition of dull sequences it is possible to split any element in the class $\mathcal{A}(m+\cdot, m)$ into some "irreducible" dull sub-sequences as follows:

$$
\overbrace{1 a_{11} \ldots a_{1 \alpha_{1}}}^{A_{1}} \overbrace{2 a_{21} \ldots a_{2 \alpha_{2}}}^{A_{2}} \ldots \overbrace{m a_{m 1} \ldots a_{m \alpha_{m}}}^{A_{m}}
$$

where each of the sub-sequences A_{i} only has elements in $[i]$ and its first element is i. If we define the sub class \mathcal{A}_{i} as the set of all sequences A_{i} that satisfy the above property, then we clearly have that

$$
\mathcal{A}_{i}(z)=\sum_{n=1}^{\infty} i^{n-1} z^{n}=\frac{z}{1-i z},
$$

since for each $A_{i}=i a_{1 i} \ldots a_{1 n}$ the position $a_{i j}$ can be any element of $[i]$. Hence, we have that

$$
\begin{aligned}
\mathcal{A}(m+\cdot m)(z) & =\mathcal{A}_{1}(z) \cdot \mathcal{A}_{2}(z) \cdot \ldots \cdot \mathcal{A}_{m}(z) \\
& =\frac{z}{1-z} \frac{z}{1-2 z} \cdots \frac{z}{1-m z},
\end{aligned}
$$

but in Lecture 12 we saw that the RHS of the above equation was the GF of the Stirling Numbers, and hence we must have that $A(m+n, m)=S(n+m, m)$.

