5. (talked with Nina and Emily) Prove that the number of partitions of n in which no part
appears ezxactly once equals the number of partitions of n into parts not congruent to 4(

mod 6).

We know that the the generating function for the number of partitions of n is given by
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However, if from one of the sums being multiplied together, we chose z?, ( the second
element in the sum) this amounts to choosing a partition of n where ¢ only appears once.
Therefore the generating function for partitions of n where no element appears exactly

once, is
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Now rewriting this last product by breaing up the product of all the 5 21 into a product
of all the even numbers 2( mod 6), 4( mod 6), and 0( mod 6), we have
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Now examining the coefficient of ™ we see that it must have taken exponents that were
either 2 mod 6,4 mod 6,3 mod 6 or 0 mod 6, that is the number of ways to form x™ are
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exactly the number of partitions into n inot parts not parts not congruent to +( mod 6).
giving us the desired equality.



