5. (talked with Nina and Emily) Prove that the number of partitions of n in which no part appears exactly once equals the number of partitions of n into parts not congruent to \pm ($\bmod 6)$.

We know that the the generating function for the number of partitions of n is given by

$$
\sum_{n=1}^{\infty} p(n) x^{n}=\prod_{i=1}^{\infty}\left(1+x^{i}+x^{2} i+\cdots\right)=\prod_{i=1}^{\infty} \frac{1}{1-x^{i}}
$$

However, if from one of the sums being multiplied together, we chose x^{i}, (the second element in the sum) this amounts to choosing a partition of n where i only appears once. Therefore the generating function for partitions of n where no element appears exactly once, is

$$
\begin{aligned}
\sum_{n=1}^{\infty} q(n) x^{n} & =\prod_{i=1}^{\infty} \frac{1}{1-x^{i}}-x^{i} \\
& =\prod_{i=1}^{\infty} \frac{1-x^{i}+x^{2 i}}{1-x^{i}} \\
& =\prod_{i=1}^{\infty} \frac{\frac{1+x^{3 i}}{1+x^{i}}}{1-x^{i}} \\
& =\prod_{i=1}^{\infty} \frac{1+x^{3 i}}{1-x^{2 i}}
\end{aligned}
$$

Now rewriting this last product by breaing up the product of all the $\frac{1}{1-x^{2 i}}$ into a product of all the even numbers $2(\bmod 6), 4(\bmod 6)$, and $0(\bmod 6)$, we have

$$
\begin{aligned}
\prod_{i=1}^{\infty} \frac{1+x^{3 i}}{1-x^{2 i}} & =\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i-4}}\right)\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i-2}}\right)\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i}}\right)\left(\prod_{i=1}^{\infty} 1+x^{3 i}\right) \\
& =\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i-4}}\right)\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i-2}}\right)\left(\prod_{i=1}^{\infty} \frac{1+x^{3 i}}{1-x^{6 i}}\right) \\
& =\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i-4}}\right)\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{6 i-2}}\right)\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{3 i}}\right)
\end{aligned}
$$

Now examining the coefficient of x^{n} we see that it must have taken exponents that were either $2 \bmod 6,4 \bmod 6,3 \bmod 6$ or $0 \bmod 6$, that is the number of ways to form x^{n} are
exactly the number of partitions into n inot parts not parts not congruent to $\pm(\bmod 6)$. giving us the desired equality.

