4. - Let x, y, q be elements of a non-commutative ring such that $y x=q x y$, and q commutes with x and y.Consider $(x+y)^{n}$, let $i \in[n]$ lets find the coefficient A of $x^{i} y^{n-i}$. Consider the multiset $M=\left\{x^{i} y^{n-i}\right\}$, we
know that in order to get how many times appears $x^{i} y^{n-i}$ we have to consider all the possible permutations of M, and, by knowing that q commutes with $x y$, reorder each permutation to get $x^{i} y^{n-i}$. Let $\pi \in S_{M}$, suppose that $x<y$ so that every time that y appears before an x it will be recorded as an inversion of π. Because q commutes with $y x$, whenever we set $y x=q x y$ we will get a q. Hence q will appear $\operatorname{inv}(\pi)$ times, that is the coefficient of each $x^{i} y^{n-i}$ is set by:

$$
\mathrm{A}=\sum_{\pi \in S_{M}} q^{i n v(\pi)}=\binom{n}{i, n-i}_{q}=\binom{n}{i}_{q}
$$

Since this happens for each i we have:

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}_{q} x^{i} y^{n-i}
$$

Which is what we wanted to prove.

- Let $x_{1}, ., ., x_{m}, q$ be elements of a non-commutative ring such that $x_{j} x_{i}=q x_{i} x_{j}$ for $i<j$ and $x_{i} q=q x_{i}$ for all i. Consider $\left(x_{1}+\ldots+\right.$ $\left.x_{m}\right)^{n}$, let $\alpha_{1},,, \alpha_{m}$ be a m-composition of n lets find the coefficient A of $x_{1}{ }^{\alpha_{1}} \ldots x_{m}{ }^{\alpha_{m}}$. Consider the multiset $M=\left\{x_{1}{ }^{\alpha_{1}} \ldots x_{m}{ }^{\alpha_{m}}\right\}$, we know that in order to get how many times appears $x_{1}{ }^{\alpha_{1}} \ldots x_{m}{ }^{\alpha_{m}}$ we have to consider all the permutations of M and, by knowing that q commutes as in the hypothesis, reorder each permutation to get $x_{1}{ }^{\alpha_{1}} \ldots x_{m}{ }^{\alpha_{m}}$. Let $\pi \in S_{M}$, suppose that $x_{i}<x_{j}$ for all $i<j$ so that every time that x_{j} appears before an x_{i} it will be recorded as an inversion of π. Because q commutes as stated in the hypothesis, whenever we set $x_{j} x_{i}=q x_{i} x_{j}$ for $i<j$ we will get a q. Hence q will appear $\operatorname{inv}(\pi)$ is set by:

$$
\mathrm{A}=\sum_{\pi \in S_{M}} q^{i n v(\pi)}=\binom{n}{\alpha_{1},,, \alpha_{m}}_{q}
$$

Since this happens for each m-composition of n we have

$$
\left(x_{1}+\ldots+x_{m}\right)^{n}=\sum_{\alpha 1}+\ldots+\alpha_{m}=n\binom{n}{\alpha_{1},,, \alpha_{m}}_{q} x_{1}^{\alpha_{1}} \ldots x_{m}^{\alpha_{m}}
$$

Which is what we wanted to prove.
(I worked with Nicolas Peña)

