4. • Let x, y, q be elements of a non-commutative ring such that yx = qxy, and q commutes with x and y. Consider $(x + y)^n$, let $i \in [n]$ lets find the coefficient A of $x^i y^{n-i}$. Consider the multiset $M = \{x^i y^{n-i}\}$, we

2

know that in order to get how many times appears $x^i y^{n-i}$ we have to consider all the possible permutations of M, and, by knowing that q commutes with xy, reorder each permutation to get $x^i y^{n-i}$. Let $\pi \in S_M$, suppose that x < y so that every time that y appears before an x it will be recorded as an inversion of π . Because q commutes with yx, whenever we set yx = qxy we will get a q. Hence q will appear $inv(\pi)$ times, that is the coefficient of each $x^i y^{n-i}$ is set by:

$$\mathbf{A} = \sum_{\pi \in S_M} q^{inv(\pi)} = {\binom{n}{i,n-i}}_q = {\binom{n}{i}}_q$$

Since this happens for each i we have:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i}_q x^i y^{n-i}$$

Which is what we wanted to prove.

• Let $x_1, ..., x_m, q$ be elements of a non-commutative ring such that $x_j x_i = q x_i x_j$ for i < j and $x_i q = q x_i$ for all *i*. Consider $(x_1 + ... + x_m)^n$, let $\alpha_1, ..., \alpha_m$ be a *m*-composition of *n* lets find the coefficient A of $x_1^{\alpha_1}...x_m^{\alpha_m}$. Consider the multiset $M = \{x_1^{\alpha_1}...x_m^{\alpha_m}\}$, we know that in order to get how many times appears $x_1^{\alpha_1}...x_m^{\alpha_m}$ we have to consider all the permutations of *M* and, by knowing that *q* commutes as in the hypothesis, reorder each permutation to get $x_1^{\alpha_1}...x_m^{\alpha_m}$. Let $\pi \in S_M$, suppose that $x_i < x_j$ for all i < j so that every time that x_j appears before an x_i it will be recorded as an inversion of π . Because *q* commutes as stated in the hypothesis, whenever we set $x_j x_i = q x_i x_j$ for i < j we will get a *q*. Hence *q* will appear $inv(\pi)$ is set by:

$$\mathbf{A} = \sum_{\pi \in S_M} q^{inv(\pi)} = {n \choose \alpha_1, \dots, \alpha_m}_q$$

Since this happens for each m-composition of n we have

$$(x_1 + \ldots + x_m)^n = \sum_{\alpha \ 1} + \ldots + \alpha_m = n \binom{n}{\alpha_1, \ldots, \alpha_m}_q x_1^{\alpha_1} \ldots x_m^{\alpha_m}$$

Which is what we wanted to prove.

(I worked with Nicolas Peña)