
and k = 2 you get 6+2−3+4−5+1+. So you have m decorated permu-
tations σ such that π = σ̂. So the sum of the length of the first run of
all permutations, is the sum of decorated permutations with at least
one − sign, which is n!

(∑n
k=1

1
k!

)
by reapeting the argument in (a).

2.

3. Consider the following bijection f between Dyck Paths and binary trees.
Let P be a Dyck of length 2n. Construct the following binary tree. Start
in (0, 0) and draw the root of f(P ). Each time you go up in P , draw the
left son from the last vertex you drew in f(P ). Each time you go down in
P , go up one vertex in f(P ) and draw the right son of that vertex. The
figure shows an example.

This is a bijection as you can go back. Let T be a binary tree. Start in the
root of T . If you can go down left in T , do it and go up in your Dyck Path.
If you can’t, then go up until you can go down right where you haven’t
been before in T and go down in the Dyck Path. By construction this is
clearly f−1, so it is in fact a bijection.

Now if you go up a(P ) steps before going down, when you draw f(P ) you
draw a(P ) left sons. Then, when you go down for the first time in P , you
go up in f(P ) and you never go back to the leftmost branch in f(P ). So
a(P ) is the length (in edges) of the left most branch. Now if at a given step
you touch back the floor in P , when drawing f(P ) this means you have
drawn as many right sons as left sons. The last right son you drew must
be in the right most branch as you are drawing the tree from left to right.
So each time P touches the floor is an edge in the rightmost branch of f(p).

Now if T is a binary tree let T ′ be the binary tree resulting from reflecting
horizantally T . If P is a Dyck path let P ′ be f−1(f(P )′). Cleary T ′′ = T
so P ′′ = P . So f(P ) has the leftmost branch of length a(P ) and rightmost
branch of length b(P ). Then f(P )′ has the leftmost branch of length b(P )
and rightmost branch of length a(P ). Then a(P ′) = b(P ) and b(P ′) =

2



a(P ). As ′ is a bijection of Dyck Paths on themselves, so∑
PDyck

xa(P )yb(P ) =
∑

PDyck

xa(P
′)yb(P

′)

=
∑

PDyck

xb(P )ya(P )

(worked with Felipe Suarez)

4. (a) We will proceed by induction on n. For n = 1, trivially x + y =(
1
0

)
q
x+

(
1
1

)
q
y. Now suppose (x+ y)n =

∑n
k=0

(
n
k

)
q
xkyn−k. We have

(x+ y)n+1 = (x+ y)n(x+ y)

=

(
n∑

k=0

(
n

k

)
q

xkyn−k

)
x+

(
n∑

k=0

(
n

k

)
q

xkyn−k

)
y

=

n∑
k=0

(
n

k

)
q

xkyn−kx+

n∑
k=0

(
n

k

)
q

xkyn−k+1

=

n∑
k=0

(
n

k

)
q

qn−kxk+1yn−k +

n∑
k=0

(
n

k

)
q

xkyn−k+1

=
∑
k=0

((
n

k − 1

)
q

qn−k+1 +

(
n

k

)
q

)
xkyn−k+1

=
∑
k=0

(
n+ 1

k

)
q

xkyn−k+1

(b) We are going to prove

(x1 + x2 . . . xm)n =
∑

a1+a2...am=n

(
n

a1, a2, . . . am

)
q

xa1
1 x

a2
2 . . . xam

m (1)

By induction on m. For m = 2 1 is true by the last item. Now suppose
1 is true for m − 1. Each time the term xa1

1 x
a2
2 . . . xam

m (possibly in
a different order) appears in the expansion of (x1 + x2 . . . xm)n look
at the position where xm appeared. Reorganizing the term so that
all the xm’s appear at the end gives us a

(
n
am

)
q

coeficient by the last

item. Now to order xa1
1 . . . x

am−1

m−1 gives us a
(

n−am

a1,...am−1

)
q

coeficient by

induction hypothesis. So we have

(x1 + x2 . . . xm)n =
∑

a1+a2...am=n

(
n

am

)
q

(
n− am

a1, a2, . . . am−1

)
q

xa1
1 x

a2
2 . . . xam

m

=
∑

a1+a2...am=n

(
n

a1, a2, . . . am

)
q

xa1
1 x

a2
2 . . . xam

m
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