(3) (A symmetric distribution for Dyck paths) For a Dyck path P let a (P) be the number of steps up that P
takes before its first step down, and let $b(P)$ be the number of times that P returns to the x-axis after it leaves it for the first time. Prove that the statistics a and b are symmetrically distributed; that is:

$$
\sum_{P D y c k} x^{a(P)} y^{b(P)}=\sum_{P \text { Dyck }} x^{b(P)} y^{a(P)}
$$

where the sum is over all Dyck paths of length $2 n$.
Let

$$
F(x, y)=\sum_{P \text { Dyck }} x^{a(P)} y^{b(P)}
$$

so that the statement of symmetric distribution can be summed up as $F(x, y)=F(y, x)$, or really that the coefficient of $x^{j} y^{k}$ in $F(x, y)$ is the same as the coefficient of $x^{k} y^{j}$.

We can accomplish this proof by showing that a bijection

$$
\{P \mid a(P)=j, b(P)=k\} \longleftrightarrow\{P \mid a(P)=k, b(P)=j\}
$$

exists. I will actually show a stronger result-that a bijection

$$
\varphi:\{P \mid a(P)=j, b(P)=k\} \longleftrightarrow\{P \mid a(P)=j+1, b(P)=k-1\}
$$

where the values make sense, i.e. $1 \leq j<j+1 \leq n$ and $n \geq k>k-1 \geq 1$.
The bijection φ is simple, and is best illustrated using the following example of a Dyck path where $2 n=11$, $a(P)=2$, and $b(P)=4$:

This Dyck path can be represented using the word "(UUDUUUDDDD)(UUDD)(UD)(UUDUDD)", where parentheses are used to emphasize the $b(P)=4$ sub-Dyck paths.
Now, to increase $a(P)$ by 1 and decrease $b(P)$ by 1 , we take the sub-Dyck path from x-coordinates 16-22 ("UUDUDD") and place the first letter (always a "U") in front of the first sub-Dyck path (shown in the image at x-coordinate 0) and place the rest of the letters ("UDUDD") after the first sub-Dyck path (in the image at x-coordiante 10). The next two figures sum up this process for creating $\varphi(P)$ for which $a(\varphi(P))=3$ and $b(\varphi(P))=3$

The inverse φ^{-1} is just as easy. Look at the first sub-Dyck path and draw a horizontal line at a height of $y=1$ starting at point $(1,1)$ and moving to the right and stopping at your first intersection point, as shown by the dotted line in the previous figure. The part of the sub-Dyck path to the left and to the right of the yellow-colored region above can be placed at the end of the entire Dyck path, adding 1 to k (and no more because the blue region can only have one point touching the x-axis), and the yellow-colored region moves down, decreasing n by 1 , and not affecting the value of k as it only returns to the line $y=1$ once by construction.
So, by repeated application of either φ or φ^{-1}, we can show that there is a bijection that switches the values of $a(\cdot)$ and $b(\cdot)$. For instance, for all Dyck paths P such that $a(P)=j$ and $b(P)=k$ for some j and k, the bijection that maps these to the set of Dyck paths with these statistics switched is φ^{k-j}.

