2. Recall that there exist a bijection ϕ from the permutations that avoid (321) in S_{n} to the set of dyck paths of length $2 n$. The bijection consists of placing $n \mathrm{X}^{\prime} s$ in a $n \times n$ board with coordinates (i, j), such that j is the value of the i th number in the permutation seen from left to right. The dyck path is constructed by walking to the right until the first X appears, after which I walk down until I reach a row with a X on the right, and the process is repeated. See image for better understanding.

The construction of the inverse image is made by putting an X in the peaks of the path. These X's will produce an incomplete permutation that avoids (321). Since in most cases the board is still incomplete, I will complete the board by blocks. I consider a block to have
as top right corner a X belonging to the peak of the path. Since I must avoid things like
\square the only possible way of doing this is by putting the X 's in the \searrow direction.

So the permutations in S_{n} that avoid (321) are in bijection with $2 n$-length dyck paths. Note that there is a bijection between (321)-avoiding permutations and (123)-avoiding permutations in S_{n}. Consider the map $\Phi: S_{n} \rightarrow S_{n}$ defined by $\left(p_{1} p_{2} \ldots p_{n}\right) \mapsto\left(p_{n} p_{n-1} \ldots p_{1}\right) . \Phi$ is clearly a bijection, more importantly if $\left(p_{1} \ldots p_{n}\right)$ avoids (321) then $\left(p_{n} \ldots p_{1}\right)$ avoids (123), otherwise there would be $i_{1}<i_{2}<i_{3}$ such that $p_{n-i_{1}}<p_{n-i_{2}}<p_{n-i_{3}}$ which is not possible because $n-i_{3}<n-i_{2}<n-i_{1}$ and $\left(p_{1} \ldots p_{n}\right)$ avoided (321).
Therefore the permutations that avoid (123) are too in bijection with $2 n$-length dyck paths. Now consider the set of permutations in S_{n} that avoid (312). I may build a dyck path from any of these permutations the same way as ϕ does. Call this new map ψ. to construct the inverse image, make the same process of ϕ (inserting X's in the peaks of the path) but
 path can be used to construct a unique permutation avoiding (312) each block must contain configurations of the form $\underset{x_{x}}{x_{x} \times}$ only, because two distinct blocks have X 's that are either all higher or all smaller than any X in the other block. Just like ϕ, there is only one way of doing it. See for example

Therefore (312) are in bijection with $2 n$-length dyck paths under ψ. This implies that (213) is also in bijection with the paths under $\Phi \circ \psi$. It only remains to show that (132) and (231) are in bijection too.

Consider the bijection $\varphi: S_{n} \rightarrow S_{n}$ that maps $\left(p_{1}, \ldots, p_{n}\right)$ into $\left(n-p_{1}, n-p_{2}, \ldots, n-p_{n}\right)$. This is also a bijection since $n-p=n-q$ implies $p=q$. I claim that if $\left(p_{1} \ldots p_{n}\right)$ avoids (312) then $\varphi\left(p_{1} \ldots p_{n}\right)$ avoids (132). Suppose by contradiction that $\left(p_{1} \ldots p_{n}\right)$ avoids (312), but $\varphi\left(p_{1} \ldots p_{n}\right)$ does not avoids (132). Then there exists $i_{1}<i_{2}<i_{3}$ such that $n-p_{i_{1}}<n-p_{i_{3}}<n-p_{i_{2}} \Leftrightarrow p_{i_{2}}<p_{i_{3}}<p_{i_{1}}$, so ($p_{1} \ldots p_{n}$) contains a (312) and we obtain a contradiction. Therefore the permutations that avoid (132) are in bijection with those that avoid (312). Thus,

$$
\begin{aligned}
\left\{D y c k p_{2 n}\right\} & \xrightarrow{\phi^{-1}} S_{n}(321) \xrightarrow{\Phi} S_{n}(123) \\
\left\{D y c k p_{2 n}\right\} & \xrightarrow{\psi^{-1}} S_{n}(312) \xrightarrow{\Phi} S_{n}(213) \xrightarrow{\Phi^{-1} \circ \varphi} S_{n}(132) \xrightarrow{\Phi} S_{n}(312)
\end{aligned}
$$

And the conclusion follows.

