2. If a permutation $w=w_{1} \ldots w_{n}$ avoid the pattern $a b c$ then the reverse permutation $w_{n} \ldots w_{1}$ avoid the pattern $c b a$. Since in some lecture is proved that the number of permutations in S_{n} avoiding 321 is C_{n} then the permutations avoiding 123 is C_{n}.

For 231: Let proceed by induction, the case for $n=1,2,3$ is clear, so assume that the number of permutation of $S_{t}, t<n$, which avoids 312 is C_{t}. Let $S_{n}(k)$ the permutations $w=w_{1} \ldots w_{n} \in S_{n}$ such that $w_{k}=n$, then :
(\Rightarrow) This direction is evident. For \Leftarrow, by contradiction suppose that w has 231 pattern, and let $w_{a} w_{b} w_{c}$, $a<b<c$, be the pattern in w. If $c \leq k$ or $a>k$ there is a contradiction because $w_{a} w_{b} w_{c}$ would be in $w_{1} \ldots w_{k}$ or in $w_{k} \ldots w_{n}$, then $a<k$ and $c>k$, but this is a contradiction too because $w_{a} w_{b} 1$ is in $w_{1} \ldots w_{k}$ and has the pattern 231. Since is possible to identify $w_{1} \ldots w_{k}$ and $w_{k+1} \ldots w_{n}$ with some permutations of S_{k} and S_{n-1-k} that avoids 231 , so $\# S_{n}(k)=C_{k} C_{n-1-k}$ by the induction hypothesis. Considering all possible values of k we obtain the number of permutations in S_{n} that avoid 231, then there are $\sum_{k=1}^{n} C_{k} C_{n-1-k}$, which is the Catalan number C_{n}

