6. (Bonus problem: cycles of even and odd permutations.)
(a) Let e_{n} be the total number of cycles among all even permutations of $[n]$, and o_{n} be the total number of cycles among all odd permutations of $[n]$. Prove that

$$
e_{n}-o_{n}=(-1)^{n}(n-2)!
$$

We have the polynomial equality

$$
x(x+1) \cdots(x+n-1)=\sum_{k=1}^{n} C(n, k) x^{k}
$$

where $C(n, k)$ is the number of permutations of $[n]$ with k cycles, and we skip term $k=0$ because $C(n, 0)=0$.
Now lets take the derivative of both sides,

$$
\sum_{i=0}^{n-1} x(x+1) \cdots \widehat{(x+i)} \cdots(x+n-1)=\sum_{k=1}^{n} k C(n, k) x^{k-1}
$$

where $\widehat{(x+i)}$ means we skip that term.
If we plug the value $x=-1$, the RHS is closely related to what we want, because when n is even, the parity of the number of cycles of a permutation is the same as the parity of the permutation itself, and if n is odd, is the opposite.
When we plug -1 in the polynomial almost all terms of the LHS are cero, except the one we skip the factor $(x+1)$, so we get

$$
-(n-2)!=\sum_{k=1}^{n} k C(n, k)(-1)^{k-1}
$$

$$
=\sum_{\mathrm{k}, \text { odd }} k C(n, k)-\sum_{\mathrm{k}, \text { even }} k C(n, k)
$$

$k C(n, k)$ is k times the number of permutations with k cycles, so it counts the total number of cycles of the permutations with k cycles, so because of what we said earlier,

$$
\text { if } n \text { is even } \sum_{\mathrm{k}, \text { odd }} k C(n, k)=o_{n} \text { and } \sum_{\mathrm{k}, \text { even }} k C(n, k)=e_{n},
$$

$$
\text { then }-(n-2)!=o_{n}-e_{n} \Rightarrow e_{n}-o_{n}=(n-2)!
$$

$$
\text { and if } n \text { is odd } \sum_{\mathrm{k}, \text { odd }} k C(n, k)=e_{n} \text { and } \sum_{\mathrm{k}, \text { even }} k C(n, k)=o_{n},
$$

then $-(n-2)!=e_{n}-o_{n}$, and in both cases we get what we wanted.
(b) Give a bijective proof of (a).

We know $f: S_{n} \longrightarrow S_{n}: w \longmapsto w(12)$ the composition with the transposition (12) si a bijection between even and odd permutations, but lets see more more detailed other bijections defined by this mapping. A permutation having 1 and 2 in the same cycle is mapped in one having them in different cycles, and the converse is true, too.
Lets say $e d_{n}=$ number of even permutations with 1 and 2 in different cycles, $e s_{n}=$ number of even permutations with 1 and 2 in the same cycle, and $o d_{n}, o s_{n}$ defined similarly. let $C e d_{n}=$ total number of cycles of even permutations with 1 and 2 in different cycles, and the others be defined similarly.
With the mapping f we have bijections that shows the following equalities

$$
\begin{gathered}
e d_{n}+e s_{n}=o d_{n}+o s_{n} \\
e d_{n}=o s_{n} \\
e s_{n}=o d_{n}
\end{gathered}
$$

And lets change the problem in terms of the new definitions.
$e_{n}=\operatorname{Ced}_{n}+\operatorname{Ces}_{n}$ and $o_{n}=\operatorname{Cod}_{n}+\operatorname{Cos}_{n}$
If we have a permutation with 1 and 2 in different cycles and we map it through f the cycles of 1 and 2 form a new cycle, so the number of cycles is decreased by one. Then

$$
C e d_{n}=C o s_{n}+e d_{n}
$$

similarly

$$
C e s_{n}=C o d_{n}+e s_{n}
$$

So we obtain $e_{n}-o_{n}=e d_{n}-e s_{n}$ meaning that what we want is equal to the number of even permutations with 1 and 2 in different cycles minus the number of even permutations with 1 and 2 in the same cycle. Now lets prove $e d_{n}-e s_{n}=(-1)^{n}(n-2)$! by induction.

If $n=2$ there is only one even permutation, (1)(2) and have 1 and 2 in different cycles, so $e d_{2}=1$ and $e s_{2}=0$, so it is true for $n=2$. Now suppose $e d_{n-1}-e s_{n-1}=(-1)^{n-1}(n-3)$! We have the following recurrence relation, $e d_{n}=e d_{n-1}+o d_{n-1}(n-1)$ depending if n is the only one in its cycle or not, if it is, then the parity of the permutation doesn't change and we have $e d_{n-1}$ possibilities for the other $n-1$, and if n is not the only one in its cycle, then when we add it to another cycle the parity of the permutation changes, so we have $o d_{n-1}$ possibilities for the $n-1$ when we erase n and to put it again we have $n-1$ possibilities for choosing the image of n.

$$
e d_{n}=e d_{n-1}+o d_{n-1}(n-1)=e d_{n-1}+e s_{n-1}(n-1)
$$

the last change because of the equalities we had at the beginning. Similarly we obtain

$$
e s_{n}=e s_{n-1}+o s_{n-1}(n-1)=e s_{n-1}+e d_{n-1}(n-1)
$$

With this we get

$$
\begin{aligned}
& e d_{n}-e s_{n}=e d_{n-1}+e s_{n-1}(n-1)-e s_{n-1}-e d_{n-1}(n-1) \\
& =\left(e d_{n-1}-e s_{n-1}\right)(1-(n-1))=(-1)^{n-1}(n-3)!(2-n)=(-1)^{n}(n-2)!
\end{aligned}
$$

