6. (Bonus problem: cycles of even and odd permutations.)

(a) Let e, be the total number of cycles among all even permutations of [n], and o, be the
total number of cycles among all odd permutations of [n]. Prove that

en—on = (—1)"(n—2)!

We have the polynomial equality
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where C'(n, k) is the number of permutations of [n] with & cycles, and we skip term
k = 0 because C(n,0) = 0.
Now lets take the derivative of both sides,
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pe+1)-(x i) (w+n—1) =Y kC(n, k)"
i=0 k=1
where (x/-—i:) means we skip that term.
If we plug the value x = —1, the RHS is closely related to what we want, because when

n is even, the parity of the number of cycles of a permutation is the same as the parity
of the permutation itself, and if n is odd, is the opposite.

When we plug —1 in the polynomial almost all terms of the LHS are cero, except the
one we skip the factor (z + 1), so we get

—(n—2)!=Y kC(n k)(-1)*"

k=1



= > kC(nk)— Y kC(nk)
k, odd k, even

kC(n,k) is k times the number of permutations with k cycles, so it counts the total
number of cycles of the permutations with &k cycles, so because of what we said earlier,

if n is even Z kC(n,k) = o, and Z kC(n, k) = en,
k, odd k, even

then —(n —2)! =0, — e, = €, — 0, = (n — 2)!

and if n is odd Z kC(n,k) = e, and Z kC(n,k) = op,
k, odd k, even

then —(n — 2)! = e, — 0, and in both cases we get what we wanted.

Give a bijective proof of (a).

We know f : S, — S, : w — w(12) the composition with the transposition (12) si
a bijection between even and odd permutations, but lets see more more detailed other
bijections defined by this mapping. A permutation having 1 and 2 in the same cycle is
mapped in one having them in different cycles, and the converse is true, too.

Lets say ed,, = number of even permutations with 1 and 2 in different cycles, es,=
number of even permutations with 1 and 2 in the same cycle, and od,,, os, defined
similarly. let Ced,= total number of cycles of even permutations with 1 and 2 in
different cycles , and the others be defined similarly.

With the mapping f we have bijections that shows the following equalities

ed, + es, = od,, + 0s,
ed, = 0s,

es, = od,

And lets change the problem in terms of the new definitions.

e, = Ced, + Ces, and o, = Cod,, + Cos,

If we have a permutation with 1 and 2 in different cycles and we map it through f the
cycles of 1 and 2 form a new cycle, so the number of cycles is decreased by one. Then

Ced, = Cos,, + ed,

similarly

Ces,, = Cod,, + es,,

So we obtain e, — 0, = ed,, — es,, meaning that what we want is equal to the number
of even permutations with 1 and 2 in different cycles minus the number of even permu-
tations with 1 and 2 in the same cycle. Now lets prove ed,, — es, = (—1)"(n — 2)! by
induction.



If n = 2 there is only one even permutation, (1)(2) and have 1 and 2 in different cycles, so
edy = 1 and esy = 0, so it is true for n = 2. Now suppose ed,,_1—es, 1 = (=1)""1(n—3)!
We have the following recurrence relation, ed,, = ed,_1 + od,,_1(n — 1) depending if n
is the only one in its cycle or not, if it is, then the parity of the permutation doesn’t
change and we have ed,,_; possibilities for the other n — 1, and if n is not the only one in
its cycle, then when we add it to another cycle the parity of the permutation changes,
so we have od,,_1 possibilities for the n — 1 when we erase n and to put it again we have
n — 1 possibilities for choosing the image of n.

ed, =ed,_1+od, 1(n—1)=ed,_1+es,_1(n—1)

the last change because of the equalities we had at the beginning. Similarly we obtain

esp = €Sp_1 +0s,_1(n—1) =es,_1 +ed,_1(n—1)

With this we get
ed, —es, =ed,_1+es,_1(n—1)—es, 1 —ed, 1(n—1)

= (ed,_1—esp_1)(1—(n—1)) = ()" (n-3)!(2—n)=(-1)"(n —2)!



