
and if we place number i below number k, and k + 1 is on the left of k, then we place the
same number i below k + 1, otherwise we place i+ 1 below k + 1

4 6 3 7 7 2 8 5 1
1 1

4 6 3 7 7 2 8 5 1
1 1 1

4 6 3 7 7 2 8 5 1
1 1 1 1

4 6 3 7 7 2 8 5 1
1 1 1 2 1

And keep doing this to get

4 6 3 7 7 2 8 5 1
1 2 1 3 3 1 4 2 1

This is a bijection because of the fact that in a full sequence, the first occurrence of k − 1 is
before the last occurrence of k.

6. (Bonus problem: cycles of even and odd permutations.)

(a) Let en be the total number of cycles among all even permutations of [n], and on be the
total number of cycles among all odd permutations of [n]. Prove that

en − on = (−1)n(n− 2)!

We have the polynomial equality

x(x+ 1) · · · (x+ n− 1) =
n∑

k=1

C(n, k)xk

where C(n, k) is the number of permutations of [n] with k cycles, and we skip term
k = 0 because C(n, 0) = 0.

Now lets take the derivative of both sides,

n−1∑
i=0

x(x+ 1) · · · (̂x+ i) · · · (x+ n− 1) =
n∑

k=1

kC(n, k)xk−1

where (̂x+ i) means we skip that term.

If we plug the value x = −1, the RHS is closely related to what we want, because when
n is even, the parity of the number of cycles of a permutation is the same as the parity
of the permutation itself, and if n is odd, is the opposite.

When we plug −1 in the polynomial almost all terms of the LHS are cero, except the
one we skip the factor (x+ 1), so we get

−(n− 2)! =
n∑

k=1

kC(n, k)(−1)k−1
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=
∑

k, odd

kC(n, k)−
∑

k, even

kC(n, k)

kC(n, k) is k times the number of permutations with k cycles, so it counts the total
number of cycles of the permutations with k cycles, so because of what we said earlier,

if n is even
∑

k, odd

kC(n, k) = on and
∑

k, even

kC(n, k) = en,

then −(n− 2)! = on − en ⇒ en − on = (n− 2)!

and if n is odd
∑

k, odd

kC(n, k) = en and
∑

k, even

kC(n, k) = on,

then −(n− 2)! = en − on, and in both cases we get what we wanted.

(b) Give a bijective proof of (a).

We know f : Sn −→ Sn : w 7−→ w(12) the composition with the transposition (12) si
a bijection between even and odd permutations, but lets see more more detailed other
bijections defined by this mapping. A permutation having 1 and 2 in the same cycle is
mapped in one having them in different cycles, and the converse is true, too.

Lets say edn = number of even permutations with 1 and 2 in different cycles, esn=
number of even permutations with 1 and 2 in the same cycle, and odn, osn defined
similarly. let Cedn= total number of cycles of even permutations with 1 and 2 in
different cycles , and the others be defined similarly.

With the mapping f we have bijections that shows the following equalities

edn + esn = odn + osn

edn = osn

esn = odn

And lets change the problem in terms of the new definitions.

en = Cedn + Cesn and on = Codn + Cosn
If we have a permutation with 1 and 2 in different cycles and we map it through f the
cycles of 1 and 2 form a new cycle, so the number of cycles is decreased by one. Then

Cedn = Cosn + edn

similarly

Cesn = Codn + esn

So we obtain en − on = edn − esn meaning that what we want is equal to the number
of even permutations with 1 and 2 in different cycles minus the number of even permu-
tations with 1 and 2 in the same cycle. Now lets prove edn − esn = (−1)n(n − 2)! by
induction.
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If n = 2 there is only one even permutation, (1)(2) and have 1 and 2 in different cycles, so
ed2 = 1 and es2 = 0, so it is true for n = 2. Now suppose edn−1−esn−1 = (−1)n−1(n−3)!

We have the following recurrence relation, edn = edn−1 + odn−1(n − 1) depending if n
is the only one in its cycle or not, if it is, then the parity of the permutation doesn’t
change and we have edn−1 possibilities for the other n−1, and if n is not the only one in
its cycle, then when we add it to another cycle the parity of the permutation changes,
so we have odn−1 possibilities for the n− 1 when we erase n and to put it again we have
n− 1 possibilities for choosing the image of n.

edn = edn−1 + odn−1(n− 1) = edn−1 + esn−1(n− 1)

the last change because of the equalities we had at the beginning. Similarly we obtain

esn = esn−1 + osn−1(n− 1) = esn−1 + edn−1(n− 1)

With this we get
edn − esn = edn−1 + esn−1(n− 1)− esn−1 − edn−1(n− 1)
= (edn−1 − esn−1)(1− (n− 1)) = (−1)n−1(n− 3)!(2− n) = (−1)n(n− 2)!

7


